cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209129 Triangle of coefficients of polynomials v(n,x) jointly generated with A209128; see the Formula section.

This page as a plain text file.
%I A209129 #12 Aug 12 2015 04:05:10
%S A209129 1,0,3,0,2,7,0,2,8,17,0,2,10,28,41,0,2,12,42,88,99,0,2,14,58,154,262,
%T A209129 239,0,2,16,76,240,524,752,577,0,2,18,96,348,908,1692,2104,1393,0,2,
%U A209129 20,118,480,1440,3224,5260,5776,3363,0,2,22,142,638,2148,5544
%N A209129 Triangle of coefficients of polynomials v(n,x) jointly generated with A209128; see the Formula section.
%C A209129 For a discussion and guide to related arrays, see A208510.
%C A209129 As triangle T(n,k) with 0<=k<=n, it is (0, 2/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -2/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 21 2012
%F A209129 u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
%F A209129 v(n,x)=x*u(n-1,x)+2x*v(n-1,x),
%F A209129 where u(1,x)=1, v(1,x)=1.
%F A209129 T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(1,0) = 1, T(2,0) = 0, T(2,1) = 3 and T(n,k) = 0 if k<0 or if k>=n. - _Philippe Deléham_, Mar 21 2012
%F A209129 G.f.: (-1+x-x*y)*x*y/(-1+x+2*x*y-x^2*y+x^2*y^2). - _R. J. Mathar_, Aug 12 2015
%e A209129 First five rows:
%e A209129 1
%e A209129 0...3
%e A209129 0...2....7
%e A209129 0...2....8...17
%e A209129 0...2...10...28...41
%e A209129 First three polynomials v(n,x): 1, 3x, 2x + 7x^2.
%t A209129 u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t A209129 u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
%t A209129 v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x];
%t A209129 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A209129 Table[Expand[v[n, x]], {n, 1, z/2}]
%t A209129 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A209129 TableForm[cu]
%t A209129 Flatten[%]    (* A209128 *)
%t A209129 Table[Expand[v[n, x]], {n, 1, z}]
%t A209129 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t A209129 TableForm[cv]
%t A209129 Flatten[%]    (* A209129 *)
%Y A209129 Cf. A209128, A208510.
%K A209129 nonn,tabl
%O A209129 1,3
%A A209129 _Clark Kimberling_, Mar 05 2012