cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209130 Triangle of coefficients of polynomials v(n,x) jointly generated with A102756; see the Formula section.

This page as a plain text file.
%I A209130 #14 Jan 24 2020 03:27:20
%S A209130 1,1,2,1,5,3,1,9,12,5,1,14,31,27,8,1,20,65,89,55,13,1,27,120,230,222,
%T A209130 108,21,1,35,203,511,684,514,205,34,1,44,322,1022,1777,1834,1125,381,
%U A209130 55,1,54,486,1890,4095,5442,4563,2367,696,89,1,65,705,3288,8625
%N A209130 Triangle of coefficients of polynomials v(n,x) jointly generated with A102756; see the Formula section.
%C A209130 Top edge:  (1,2,3,5,8,...) = A000045(n+1), Fibonacci numbers.
%C A209130 Alternating row sums: 1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,...
%C A209130 For a discussion and guide to related arrays, see A208510.
%C A209130 Subtriangle of the triangle T(n,k) given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 08 2012
%F A209130 u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
%F A209130 v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x),
%F A209130 where u(1,x)=1, v(1,x)=1.
%F A209130 From _Philippe Deléham_, Mar 08 2012: (Start)
%F A209130 As DELTA-triangle T(n,k) with 0 <= k <= n:
%F A209130 T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 if k < 0 or if k > n.
%F A209130 G.f.: (1-x-y*x+y*x^2-y^2*x^2)/(1-(2+y)*x-(y^2-1)*x^2).
%F A209130 Sum_{k=0..n, n>=1} T(n,k)*x^k = A153881(n), A000012(n), A000244(n-1), A126473(n-1) for x = -1, 0, 1, 2 respectively. (End)
%e A209130 First five rows:
%e A209130   1;
%e A209130   1,  2;
%e A209130   1,  5,  3;
%e A209130   1,  9, 12,  5;
%e A209130   1, 14, 31, 27,  8;
%e A209130 First three polynomials v(n,x):
%e A209130   1
%e A209130   1 + 2x
%e A209130   1 + 5x + 3x^2.
%e A209130 From _Philippe Deléham_, Mar 08 2012: (Start)
%e A209130 (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0...) begins:
%e A209130   1;
%e A209130   1,  0;
%e A209130   1,  2,  0;
%e A209130   1,  5,  3,  0;
%e A209130   1,  9, 12,  5,  0;
%e A209130   1, 14, 31, 27,  8,  0;
%e A209130   1, 20, 65, 89, 55, 13, 0; ...
%e A209130 with row sums 1, 1, 3, 9, 27, 81, 243, 729, ... (powers of 3). (End)
%t A209130 u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t A209130 u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
%t A209130 v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
%t A209130 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A209130 Table[Expand[v[n, x]], {n, 1, z/2}]
%t A209130 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A209130 TableForm[cu]
%t A209130 Flatten[%]    (* A102756 *)
%t A209130 Table[Expand[v[n, x]], {n, 1, z}]
%t A209130 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t A209130 TableForm[cv]
%t A209130 Flatten[%]    (* A209130 *)
%Y A209130 Cf. A102756, A208510.
%K A209130 nonn,tabl
%O A209130 1,3
%A A209130 _Clark Kimberling_, Mar 05 2012