This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209130 #14 Jan 24 2020 03:27:20 %S A209130 1,1,2,1,5,3,1,9,12,5,1,14,31,27,8,1,20,65,89,55,13,1,27,120,230,222, %T A209130 108,21,1,35,203,511,684,514,205,34,1,44,322,1022,1777,1834,1125,381, %U A209130 55,1,54,486,1890,4095,5442,4563,2367,696,89,1,65,705,3288,8625 %N A209130 Triangle of coefficients of polynomials v(n,x) jointly generated with A102756; see the Formula section. %C A209130 Top edge: (1,2,3,5,8,...) = A000045(n+1), Fibonacci numbers. %C A209130 Alternating row sums: 1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,... %C A209130 For a discussion and guide to related arrays, see A208510. %C A209130 Subtriangle of the triangle T(n,k) given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 08 2012 %F A209130 u(n,x) = u(n-1,x) + (x+1)*v(n-1,x), %F A209130 v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x), %F A209130 where u(1,x)=1, v(1,x)=1. %F A209130 From _Philippe Deléham_, Mar 08 2012: (Start) %F A209130 As DELTA-triangle T(n,k) with 0 <= k <= n: %F A209130 T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 if k < 0 or if k > n. %F A209130 G.f.: (1-x-y*x+y*x^2-y^2*x^2)/(1-(2+y)*x-(y^2-1)*x^2). %F A209130 Sum_{k=0..n, n>=1} T(n,k)*x^k = A153881(n), A000012(n), A000244(n-1), A126473(n-1) for x = -1, 0, 1, 2 respectively. (End) %e A209130 First five rows: %e A209130 1; %e A209130 1, 2; %e A209130 1, 5, 3; %e A209130 1, 9, 12, 5; %e A209130 1, 14, 31, 27, 8; %e A209130 First three polynomials v(n,x): %e A209130 1 %e A209130 1 + 2x %e A209130 1 + 5x + 3x^2. %e A209130 From _Philippe Deléham_, Mar 08 2012: (Start) %e A209130 (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0...) begins: %e A209130 1; %e A209130 1, 0; %e A209130 1, 2, 0; %e A209130 1, 5, 3, 0; %e A209130 1, 9, 12, 5, 0; %e A209130 1, 14, 31, 27, 8, 0; %e A209130 1, 20, 65, 89, 55, 13, 0; ... %e A209130 with row sums 1, 1, 3, 9, 27, 81, 243, 729, ... (powers of 3). (End) %t A209130 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209130 u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; %t A209130 v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; %t A209130 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209130 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209130 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209130 TableForm[cu] %t A209130 Flatten[%] (* A102756 *) %t A209130 Table[Expand[v[n, x]], {n, 1, z}] %t A209130 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209130 TableForm[cv] %t A209130 Flatten[%] (* A209130 *) %Y A209130 Cf. A102756, A208510. %K A209130 nonn,tabl %O A209130 1,3 %A A209130 _Clark Kimberling_, Mar 05 2012