A209131 Triangle of coefficients of polynomials u(n,x) jointly generated with A209132; see the Formula section.
1, 2, 1, 2, 4, 3, 2, 8, 12, 5, 2, 12, 28, 28, 11, 2, 16, 52, 84, 68, 21, 2, 20, 84, 188, 236, 156, 43, 2, 24, 124, 356, 612, 628, 356, 85, 2, 28, 172, 604, 1324, 1852, 1612, 796, 171, 2, 32, 228, 948, 2532, 4500, 5316, 4020, 1764, 341, 2, 36, 292, 1404
Offset: 1
Examples
First five rows: 1; 2, 1; 2, 4, 3; 2, 8, 12, 5; 2, 12, 28, 28, 11; First three polynomials u(n,x): 1 2 + x 2 + 4x + 3x^2 From _Philippe Deléham_, Mar 21 2012: (Start) (1, 1, -2, 1, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, ...) begins: 1; 1, 0; 2, 1, 0; 2, 4, 3, 0; 2, 8, 12, 5, 0; 2, 12, 28, 28, 11, 0; 2, 16, 52, 84, 68, 21, 0; 2, 20, 84, 188, 236, 156, 43, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209131 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209132 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 21 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-y*x+x^2-y*x^2-2*y^2*x^2)/(1-x-y*x-y*x^2-2*y^2*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(2,0) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments