A209132 Triangle of coefficients of polynomials v(n,x) jointly generated with A209131; see the Formula section.
1, 0, 3, 0, 4, 5, 0, 4, 12, 11, 0, 4, 20, 36, 21, 0, 4, 28, 76, 92, 43, 0, 4, 36, 132, 244, 228, 85, 0, 4, 44, 204, 508, 716, 540, 171, 0, 4, 52, 292, 916, 1732, 1972, 1252, 341, 0, 4, 60, 396, 1500, 3564, 5436, 5196, 2844, 683, 0, 4, 68, 516, 2292, 6564
Offset: 1
Examples
First five rows: 1; 0, 3; 0, 4, 5; 0, 4, 12, 11; 0, 4, 20, 36, 21; First three polynomials v(n,x): 1 3x 4x + 5x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209131 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209132 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + 2*T(n-2,k-2), T(1,0) = 1, T(2,0) = 0, T(2,1) = 3 and T(n,k) = 0 if k < 0 or if k >= n.- Philippe Deléham, Mar 21 2012
G.f.: (-1-2*x*y+x)*x*y/((1+x*y)*(2*x*y+x-1)). - R. J. Mathar, Aug 12 2015
Comments