A209133 Triangle of coefficients of polynomials u(n,x) jointly generated with A209134; see the Formula section.
1, 2, 1, 2, 5, 4, 2, 9, 18, 10, 2, 13, 40, 56, 28, 2, 17, 70, 154, 176, 76, 2, 21, 108, 320, 564, 540, 208, 2, 25, 154, 570, 1344, 1976, 1640, 568, 2, 29, 208, 920, 2700, 5304, 6720, 4928, 1552, 2, 33, 270, 1386, 4848, 11844, 20016, 22320, 14688, 4240
Offset: 1
Examples
First five rows: 1; 2, 1; 2, 5, 4; 2, 9, 18, 10; 2, 13, 40, 56, 28; First three polynomials u(n,x): 1 2 + x 2 + 5x + 4x^2 From _Philippe Deléham_, Apr 10 2012: (Start) (1, 1, -2, 1, 0, 0, 0, ...) DELTA (0, 1, 3, -2, 0, 0, 0, ...) begins: 1; 1, 0; 2, 1, 0; 2, 5, 4, 0; 2, 9, 18, 10, 0; 2, 13, 40, 56, 28, 0; 2, 17, 70, 154, 176, 76, 0; 2, 21, 108, 320, 564, 540, 208, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209133 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209134 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 10 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-2*y*x+x^2-y*x^2-2*y^2*x^2)/(1-x-2*y*x-2*y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(2,0) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments