A209134 Triangle of coefficients of polynomials v(n,x) jointly generated with A209133; see the Formula section.
1, 0, 4, 0, 4, 10, 0, 4, 18, 28, 0, 4, 26, 72, 76, 0, 4, 34, 132, 256, 208, 0, 4, 42, 208, 572, 864, 568, 0, 4, 50, 300, 1056, 2272, 2808, 1552, 0, 4, 58, 408, 1740, 4800, 8496, 8896, 4240, 0, 4, 66, 532, 2656, 8880, 20208, 30432, 27648, 11584, 0, 4, 74
Offset: 1
Examples
First five rows: 1 0...4 0...4...10 0...4...18...28 0...4...26...72...76 First three polynomials v(n,x): 1, 4x, 4x + 10x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209133 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209134 *)
Formula
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=2x*u(n-1,x)+2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-2), T(1,0) = 1, T(2,0) = 0, T(2,1) = 4 and T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Apr 10 2012
Comments