A209135 Triangle of coefficients of polynomials u(n,x) jointly generated with A209136; see the Formula section.
1, 2, 1, 3, 5, 3, 4, 14, 16, 5, 5, 30, 54, 39, 11, 6, 55, 144, 171, 98, 21, 7, 91, 329, 561, 503, 229, 43, 8, 140, 672, 1534, 1928, 1380, 532, 85, 9, 204, 1260, 3690, 6106, 6084, 3636, 1203, 171, 10, 285, 2208, 8058, 16852, 21890, 18060, 9249, 2694
Offset: 1
Examples
First five rows: 1; 2, 1; 3, 5, 3; 4, 14, 16, 5; 5, 30, 54, 39, 11; First three polynomials u(n,x): 1 2 + x 3 + 5x + 3x^2 From _Philippe Deléham_, Apr 11 2012: (Start) (1, 1, -1, 1, 0, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, 0, ...) begins: 1; 1, 0; 2, 1, 0; 3, 5, 3, 0; 4, 14, 16, 5, 0; 5, 30, 54, 39, 11, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209135 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209136 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 11 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-x-y*x+x^2-y*x^2-2*y^2*x^2)/(1-2*x-y*x+x^2-y*x^2-2*y^2*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(2,0) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments