A209137 Triangle of coefficients of polynomials u(n,x) jointly generated with A209138; see the Formula section.
1, 2, 1, 3, 4, 2, 5, 10, 9, 3, 8, 22, 28, 18, 5, 13, 45, 74, 68, 35, 8, 21, 88, 177, 210, 154, 66, 13, 34, 167, 397, 574, 541, 331, 122, 21, 55, 310, 850, 1446, 1656, 1302, 686, 222, 34, 89, 566, 1758, 3434, 4614, 4404, 2982, 1382, 399, 55, 144, 1020
Offset: 1
Examples
First five rows: 1; 2, 1; 3, 4, 2; 5, 10, 9, 3; 8, 22, 28, 18, 5; First three polynomials u(n,x): 1 2 + x 3 + 4x + 2x^2 From _Philippe Deléham_, Apr 11 2012: (Start) (1, 1, -1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins: 1; 1, 0; 2, 1, 0; 3, 4, 2, 0; 5, 10, 9, 3, 0; 8, 22, 28, 18, 5, 0; 13, 45, 74, 68, 35, 8, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209137 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209138 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 11 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-y*x-y*x^2-y^2*x^2)/(1-x-y*x-x^2-y*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(2,0) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments