This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209138 #18 Jan 22 2020 03:35:41 %S A209138 1,1,2,2,4,3,3,9,10,5,5,18,28,22,8,8,35,68,74,45,13,13,66,154,210,177, %T A209138 88,21,21,122,331,541,574,397,167,34,34,222,686,1302,1656,1446,850, %U A209138 310,55,55,399,1382,2982,4404,4614,3434,1758,566,89,89,710,2723 %N A209138 Triangle of coefficients of polynomials v(n,x) jointly generated with A209137; see the Formula section. %C A209138 Every row begins and ends with a Fibonacci number (A000045). %C A209138 u(n,1) = n-th row sum = 3^(n-1). %C A209138 Alternating row sums: 1,-1,1,-1,1,-1,1,-1,1,-1,... %C A209138 For a discussion and guide to related arrays, see A208510. %F A209138 u(n,x) = u(n-1,x) + (x+1)*v(n-1,x), %F A209138 v(n,x) = (x+1)*u(n-1,x) + x*v(n-1,x), %F A209138 where u(1,x)=1, v(1,x)=1. %F A209138 From _Philippe Deléham_, Apr 11 2012: (Start) %F A209138 T(n,k) = A185081(n,k+1). %F A209138 T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(1,0) = T(2,0) = 1, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k >= n. (End) %e A209138 First five rows: %e A209138 1; %e A209138 1, 2; %e A209138 2, 4, 3; %e A209138 3, 9, 10, 5; %e A209138 5, 18, 28, 22, 8; %e A209138 First three polynomials v(n,x): 1, 1 + 2x, 2 + 4x + 3x^2. %e A209138 From _Philippe Deléham_, Apr 11 2012: (Start) %e A209138 Triangle in A185081 begins: %e A209138 1; %e A209138 0, 1; %e A209138 0, 1, 2; %e A209138 0, 2, 4, 3; %e A209138 0, 3, 9, 10, 5; %e A209138 0, 5, 18, 28, 22, 8; %e A209138 ... (End) %t A209138 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209138 u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; %t A209138 v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x]; %t A209138 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209138 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209138 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209138 TableForm[cu] %t A209138 Flatten[%] (* A209137 *) %t A209138 Table[Expand[v[n, x]], {n, 1, z}] %t A209138 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209138 TableForm[cv] %t A209138 Flatten[%] (* A209138 *) %Y A209138 Cf. A209137, A208510. %K A209138 nonn,tabl %O A209138 1,3 %A A209138 _Clark Kimberling_, Mar 05 2012