A209140 Triangle of coefficients of polynomials v(n,x) jointly generated with A209139; see the Formula section.
1, 1, 3, 2, 5, 7, 3, 12, 18, 17, 5, 23, 51, 58, 41, 8, 45, 118, 189, 175, 99, 13, 84, 264, 506, 645, 507, 239, 21, 155, 558, 1268, 1950, 2085, 1428, 577, 34, 281, 1145, 2974, 5395, 6998, 6482, 3940, 1393, 55, 504, 2286, 6687, 13851, 21141, 23856
Offset: 1
Examples
First five rows: 1; 1, 3; 2, 5, 7; 3, 12, 18, 17; 5, 23, 51, 58, 41; First three polynomials v(n,x): 1 1 + 3x 2 + 5x + 7x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209139 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209140 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) + T(n-2,k-2), T(1,0) = T(2,0) = 1, T(2,1) = 3, T(n,k) = 0 if k < 0 or if k >= n. - Philippe Deléham, Apr 11 2012
Comments