cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209140 Triangle of coefficients of polynomials v(n,x) jointly generated with A209139; see the Formula section.

Original entry on oeis.org

1, 1, 3, 2, 5, 7, 3, 12, 18, 17, 5, 23, 51, 58, 41, 8, 45, 118, 189, 175, 99, 13, 84, 264, 506, 645, 507, 239, 21, 155, 558, 1268, 1950, 2085, 1428, 577, 34, 281, 1145, 2974, 5395, 6998, 6482, 3940, 1393, 55, 504, 2286, 6687, 13851, 21141, 23856
Offset: 1

Views

Author

Clark Kimberling, Mar 05 2012

Keywords

Comments

Column 1: Fibonacci numbers, A000045.
Alternating row sums: (-2)^(n-1).
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
  1;
  1,  3;
  2,  5,  7;
  3, 12, 18, 17;
  5, 23, 51, 58, 41;
First three polynomials v(n,x):
  1
  1 + 3x
  2 + 5x + 7x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209139 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209140 *)

Formula

u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) + T(n-2,k-2), T(1,0) = T(2,0) = 1, T(2,1) = 3, T(n,k) = 0 if k < 0 or if k >= n. - Philippe Deléham, Apr 11 2012