A209141 Triangle of coefficients of polynomials u(n,x) jointly generated with A209142; see the Formula section.
1, 2, 1, 4, 5, 2, 8, 16, 12, 3, 16, 44, 49, 25, 5, 32, 112, 166, 127, 50, 8, 64, 272, 504, 513, 301, 96, 13, 128, 640, 1424, 1808, 1408, 670, 180, 21, 256, 1472, 3824, 5816, 5641, 3562, 1427, 331, 34, 512, 3328, 9888, 17520, 20330, 15981, 8494, 2939
Offset: 1
Examples
First five rows: 1 2....1 4....5....2 8....16...12...3 16...44...49...25...5 First three polynomials u(n,x): 1, 2 + x, 4 + 5x + 2x^2 Triangle (1, 1, 0, 0, 0...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins : 1 1, 0 2, 1, 0 4, 5, 2, 0 8, 16, 12, 3, 0 16, 44, 49, 25, 5, 0 32, 112, 166, 127, 50, 8, 0
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209141 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209142 *)
Formula
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 0, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Mar 07 2012
G.f.: -x*y/(-1+x*y+x^2*y^2+2*x+x^2*y). - R. J. Mathar, Aug 12 2015
Comments