cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209142 Triangle of coefficients of polynomials v(n,x) jointly generated with A209141; see the Formula section.

Original entry on oeis.org

1, 2, 2, 4, 7, 3, 8, 20, 17, 5, 16, 52, 65, 37, 8, 32, 128, 210, 176, 75, 13, 64, 304, 616, 679, 428, 146, 21, 128, 704, 1696, 2312, 1921, 971, 276, 34, 256, 1600, 4464, 7240, 7449, 4970, 2097, 511, 55, 512, 3584, 11360, 21344, 26146, 21622, 12056
Offset: 1

Views

Author

Clark Kimberling, Mar 06 2012

Keywords

Comments

Each row begins with a power of 2 and ends with a Fibonacci number.
Alternating row sums: 1,0,0,0,0,0,0,0,0,0,0,...
For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0<=k<=n, it is (2, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 07 2012

Examples

			First five rows:
1
2....2
4....7....3
8....20...17...5
16...52...65...37...8
First three polynomials v(n,x): 1, 2 + 2x, 4 + 7x + 3x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209141 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209142 *)

Formula

u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
As triangle T(n,k), 0<=k<=n : T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = 1, T(1,0) = T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 07 2012
G.f.: (-1-x*y)*x*y/(-1+x*y+x^2*y^2+2*x+x^2*y). - R. J. Mathar, Aug 12 2015