This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209145 #8 Aug 06 2025 08:41:48 %S A209145 1,2,1,4,4,1,7,10,5,1,12,22,16,6,1,20,45,43,23,7,1,33,88,104,72,31,8, %T A209145 1,54,167,235,199,110,40,9,1,88,310,506,506,340,158,50,10,1,143,566, %U A209145 1051,1211,956,538,217,61,11,1,232,1020,2123,2768,2507,1652,805,288,73,12,1 %N A209145 Triangle of coefficients of polynomials u(n,x) jointly generated with A122075; see the Formula section. %C A209145 For a discussion and guide to related arrays, see A208510. %F A209145 u(n,x)=u(n-1,x)+(x+1)*v(n-1,x), %F A209145 v(n,x)=u(n-1,x)+x*v(n-1,x)+1, %F A209145 where u(1,x)=1, v(1,x)=1. %e A209145 First five rows: %e A209145 1 %e A209145 2 1 %e A209145 4 4 1 %e A209145 7 10 5 1 %e A209145 12 22 16 6 1 %e A209145 First three polynomials u(n,x): 1, 2 + x, 4 + 4*x + x^2. %t A209145 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209145 u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; %t A209145 v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1; %t A209145 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209145 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209145 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209145 TableForm[cu] %t A209145 Flatten[%] (* A209145 *) %t A209145 Table[Expand[v[n, x]], {n, 1, z}] %t A209145 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209145 TableForm[cv] %t A209145 Flatten[%] (* A122075 *) %Y A209145 Cf. A209144, A208510. %K A209145 nonn,tabl %O A209145 1,2 %A A209145 _Clark Kimberling_, Mar 06 2012