A209148 Triangle of coefficients of polynomials u(n,x) jointly generated with A209149; see the Formula section.
1, 2, 1, 5, 5, 1, 11, 16, 7, 1, 23, 44, 30, 9, 1, 47, 112, 104, 48, 11, 1, 95, 272, 320, 200, 70, 13, 1, 191, 640, 912, 720, 340, 96, 15, 1, 383, 1472, 2464, 2352, 1400, 532, 126, 17, 1, 767, 3328, 6400, 7168, 5152, 2464, 784, 160, 19, 1, 1535, 7424
Offset: 1
Examples
First five rows: 1 2....1 5....5....1 11...16...7....1 23...44...30...9...1 First three polynomials v(n,x): 1, 2 + x, 5 + 5x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209148 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209149 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = u(n-1,x) + (x+1)*v(n-1,x)+1,
where u(1,x) = 1, v(1,x) = 1.
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k)-T(n-2,k-1), T(1,0)=T(2,1)=T(3,2)=1, T(2,0)=2, T(3,0)=T(3,1)=5, T(n,k)=0 if k<0 or if k>=n. - Philippe Deléham, Jan 17 2014
Extensions
Example corrected by Philippe Deléham, Jan 17 2014
Comments