This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209149 #18 Jan 22 2020 03:35:49 %S A209149 1,3,1,6,5,1,12,16,7,1,24,44,30,9,1,48,112,104,48,11,1,96,272,320,200, %T A209149 70,13,1,192,640,912,720,340,96,15,1,384,1472,2464,2352,1400,532,126, %U A209149 17,1,768,3328,6400,7168,5152,2464,784,160,19,1,1536,7424 %N A209149 Triangle of coefficients of polynomials v(n,x) jointly generated with A209146; see the Formula section. %C A209149 Alternating row sums: 1,2,2,2,2,2,2,2,2,2,2,2,2,... %C A209149 For a discussion and guide to related arrays, see A208510. %C A209149 As triangle T(n,k) with 0 <= k <= n, it is (3, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 08 2012 %C A209149 A skew triangle of A209144. - _Philippe Deléham_, Mar 08 2012 %C A209149 Riordan array ( (1 + x)/(1 - 2*x), x/(1 - 2*x) ). Cf. A118800. Matrix inverse is a signed version of A112626. - _Peter Bala_, Jul 17 2013 %F A209149 u(n,x) = u(n-1,x) + (x+1)*v(n-1,x), %F A209149 v(n,x) = u(n-1,x) + (x+1)*v(n-1,x) + 1, %F A209149 where u(1,x)=1, v(1,x)=1. %F A209149 As DELTA-triangle: %F A209149 T(n,k) = 2*T(n-1,k) + T(n-1,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k < 0 or if k > n. - _Philippe Deléham_, Mar 08 2012 %F A209149 As DELTA-triangle: G.f. is (1+x)/(1-2*x-yx). - _Philippe Deléham_, Mar 08 2012 %e A209149 First five rows: %e A209149 1; %e A209149 3, 1; %e A209149 6, 5, 1; %e A209149 12, 16, 7, 1; %e A209149 24, 44, 30, 9, 1; %e A209149 First three polynomials v(n,x): 1, 3 + x, 6 + 5x + x^2. %e A209149 v(1,x) = 1 %e A209149 v(2,x) = 3 + x %e A209149 v(3,x) = (3 + x)*(2 + x) %e A209149 v(4,x) = (3 + x)*(2 + x)^2 %e A209149 v(5,x) = (3 + x)*(2 + x)^3 %e A209149 v(n,x) = (3 + x)*(2 + x)^(n-2)for n > 1. - _Philippe Deléham_, Mar 08 2012 %t A209149 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209149 u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; %t A209149 v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; %t A209149 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209149 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209149 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209149 TableForm[cu] %t A209149 Flatten[%] (* A209148 *) %t A209149 Table[Expand[v[n, x]], {n, 1, z}] %t A209149 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209149 TableForm[cv] %t A209149 Flatten[%] (* A209149 *) %Y A209149 Cf. A209144, A209146, A209148, A208510. %Y A209149 Cf. A084938, A112626. %K A209149 nonn,tabl %O A209149 1,2 %A A209149 _Clark Kimberling_, Mar 07 2012