cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209151 Triangle of coefficients of polynomials u(n,x) jointly generated with A208337; see the Formula section.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 8, 8, 3, 5, 13, 19, 15, 5, 6, 19, 36, 42, 28, 8, 7, 26, 60, 91, 89, 51, 13, 8, 34, 92, 170, 216, 182, 92, 21, 9, 43, 133, 288, 446, 489, 363, 164, 34, 10, 53, 184, 455, 826, 1105, 1068, 709, 290, 55, 11, 64, 246, 682, 1414, 2219, 2619
Offset: 1

Views

Author

Clark Kimberling, Mar 07 2012

Keywords

Comments

Last term in each row is a Fibonacci number (A000045).
Alternating row sums: 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
2...1
3...4....2
4...8....8....3
5...13...19...15...5
First three polynomials v(n,x): 1, 2 + x, 3 + 4x + 2x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209151 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208337 *)

Formula

u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.