A209164 Triangle of coefficients of polynomials u(n,x) jointly generated with A209165; see the Formula section.
1, 2, 1, 5, 5, 1, 11, 15, 6, 1, 23, 41, 27, 9, 1, 47, 105, 95, 45, 10, 1, 95, 257, 295, 185, 65, 13, 1, 191, 609, 847, 665, 315, 91, 14, 1, 383, 1409, 2303, 2177, 1295, 497, 119, 17, 1, 767, 3201, 6015, 6657, 4767, 2289, 735, 153, 18, 1, 1535, 7169, 15231
Offset: 1
Examples
First five rows: 1 2....1 5....5....1 11...15...6....1 23...41...27...9...1 First three polynomials v(n,x): 1, 2 + x, 5 + 5x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209164 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209165 *)
Formula
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments