A209165 Triangle of coefficients of polynomials v(n,x) jointly generated with A209164; see the Formula section.
1, 3, 1, 6, 4, 1, 12, 14, 7, 1, 24, 40, 28, 8, 1, 48, 104, 96, 44, 11, 1, 96, 256, 296, 184, 66, 12, 1, 192, 608, 848, 664, 316, 90, 15, 1, 384, 1408, 2304, 2176, 1296, 496, 120, 16, 1, 768, 3200, 6016, 6656, 4768, 2288, 736, 152, 19, 1, 1536, 7168, 15232
Offset: 1
Examples
First five rows: 1 3....1 6....4....1 12...14...7....1 24...40...28...8...1 First three polynomials v(n,x): 1, 3 + x, 6 + 4x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209164 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209165 *)
Formula
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments