A209172 Triangle of coefficients of polynomials u(n,x) jointly generated with A209413; see the Formula section.
1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 6, 11, 15, 1, 1, 7, 23, 26, 31, 1, 1, 9, 30, 72, 57, 63, 1, 1, 10, 48, 102, 201, 120, 127, 1, 1, 12, 58, 198, 303, 522, 247, 255, 1, 1, 13, 82, 256, 699, 825, 1291, 502, 511, 1, 1, 15, 95, 420, 955, 2223, 2116, 3084, 1013, 1023, 1
Offset: 1
Examples
First five rows: 1; 1, 1; 1, 3, 1; 1, 4, 7, 1; 1, 6, 11, 15, 1; First three polynomials v(n,x): 1 1 + x 1 + 3x + x^2. From _Philippe Deléham_, Mar 11 2012: (Start) (1, 0, 1, -2, 0, 0, 0,...) DELTA (0, 1, 0, 2, 0, 0, ...) begins: 1; 1, 0; 1, 1, 0; 1, 3, 1, 0; 1, 4, 7, 1, 0; 1, 6, 11, 15, 1, 0; 1, 7, 23, 26, 31, 1, 0; 1, 9, 30, 72, 57, 63, 1, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209172 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209413 *)
Formula
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 11 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = 3*T(n-1,k-1) + T(n-2,k) - 2*T(n-2,k-2) with T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1+x-3*y*x-2*y*x^2+2*y^2*x^2)/(1-3*y*x-x^2+2*y^2*x^2). (End)
Comments