A209205 Values of the difference d for 6 primes in geometric-arithmetic progression with the minimal sequence {7*7^j + j*d}, j = 0 to 5.
144, 1494, 1740, 2040, 3324, 4044, 6420, 12804, 13260, 13464, 13620, 15444, 25824, 31524, 31674, 31680, 32124, 33720, 38064, 40410, 44634, 45804, 46260, 51810, 54510, 56100, 58914, 60810, 68004, 69114, 70794, 74574, 76050, 77694, 80580, 81510, 82434, 89244
Offset: 1
Keywords
Examples
d = 1494 then {7*7^j + j*d}, j = 0 to 5, is {7, 1543, 3331, 6883, 22783, 125119}, which is 6 primes in geometric-arithmetic progression.
Links
- Sameen Ahmed Khan, Table of n, a(n) for n = 1..10000
- Sameen Ahmed Khan, Primes in Geometric-Arithmetic Progression, arXiv:1203.2083v1 [math.NT], (Mar 09 2012).
Programs
-
Mathematica
p = 7; gapset6d = {}; Do[If[PrimeQ[{p, p*p + d, p*p^2 + 2*d, p*p^3 + 3*d, p*p^4 + 4*d, p*p^5 + 5*d}] == {True, True, True, True, True, True}, AppendTo[gapset6d, d]], {d, 0, 100000, 2}]; gapset6d
Comments