A209206 Values of the difference d for 7 primes in geometric-arithmetic progression with the minimal sequence {7*7^j + j*d}, j = 0 to 6.
3324, 13260, 38064, 46260, 51810, 54510, 58914, 76050, 81510, 82434, 109800, 119340, 120714, 132390, 141480, 154254, 167904, 169734, 185040, 209214, 252864, 253110, 256080, 278514, 291930, 292314, 337104, 341694, 379944, 392964, 404730, 406074, 412050
Offset: 1
Keywords
Examples
d = 13260 then {7*7^j + j*d}, j = 0 to 6, is {7, 13309, 26863, 42181, 69847, 183949, 903103}, which is 7 primes in geometric-arithmetic progression.
Links
- Sameen Ahmed Khan, Table of n, a(n) for n = 1..5875
- Sameen Ahmed Khan, Primes in Geometric-Arithmetic Progression, arXiv:1203.2083v1 [math.NT], (Mar 09 2012).
Programs
-
Mathematica
p = 7; gapset7d = {}; Do[If[PrimeQ[{p, p*p + d, p*p^2 + 2*d, p*p^3 + 3*d, p*p^4 + 4*d, p*p^5 + 5*d, p*p^6 + 6*d}] == {True, True, True, True, True, True, True}, AppendTo[gapset7d, d]], {d, 0, 500000, 2}]; gapset7d
Comments