A209209 Values of the difference d for 10 primes in geometric-arithmetic progression with the minimal sequence {11*11^j + j*d}, j = 0 to 9.
903030, 17988210, 28962390, 39768150, 74306610, 89115210, 116535300, 173227980, 186013380, 237952050, 359613030, 386317920, 392253990, 443687580, 499153200, 548024610, 591655080, 652133160, 665780640, 705583830, 758828310, 910046550, 920546160, 921847290
Offset: 1
Keywords
Examples
d = 17988210 then {11*11^j + j*d}, j = 0 to 9, is {11, 17988331, 35977751, 53979271, 72113891, 91712611, 127416431, 340276351, 2501853371, 26099318491}, which is 10 primes in geometric-arithmetic progression.
Links
- Sameen Ahmed Khan, Table of n, a(n) for n = 1..96
- Sameen Ahmed Khan, Primes in Geometric-Arithmetic Progression, arXiv:1203.2083v1 [math.NT], (Mar 09 2012).
Programs
-
Mathematica
p = 11; gapset10d = {}; Do[If[PrimeQ[{p, p*p + d, p*p^2 + 2*d, p*p^3 + 3*d, p*p^4 + 4*d, p*p^5 + 5*d, p*p^6 + 6*d, p*p^7 + 7*d, p*p^8 + 8*d, p*p^9 + 9*d}] == {True, True, True, True, True, True, True, True, True, True}, AppendTo[gapset10d, d]], {d, 0, 10^8, 2}]
Comments