This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209210 #9 Mar 31 2012 10:28:59 %S A209210 443687580,591655080,1313813550,2868131100,3525848580,3598823970, %T A209210 4453413120,6075076800,6644124480,7429693770,9399746580,11801410530, %U A209210 12450590250 %N A209210 Values of the difference d for 11 primes in geometric-arithmetic progression with the minimal sequence {11*11^j + j*d}, j = 0 to 10. %C A209210 A geometric-arithmetic progression of primes is a set of k primes (denoted by GAP-k) of the form p r^j + j d for fixed p, r and d and consecutive j. Symbolically, for r = 1, this sequence simplifies to the familiar primes in arithmetic progression (denoted by AP-k). The computations were done without any assumptions on the form of d. Primality requires d to be multiple of 5# = 30 and coprime to 11. %H A209210 Sameen Ahmed Khan, <a href="http://arxiv.org/abs/1203.2083/">Primes in Geometric-Arithmetic Progression</a>, arXiv:1203.2083v1 [math.NT], (Mar 09 2012). %e A209210 d = 591655080 then {11*11^j + j*d}, j = 0 to 10, is {11, 591655201, 1183311491, 1774979881, 2366781371, 2960046961, 3569417651, 4355944441, 7091188331, 31262320321, 291228221411}, which is 11 primes in geometric-arithmetic progression. %t A209210 p = 11; gapset11d = {}; Do[If[PrimeQ[{p, p*p + d, p*p^2 + 2*d, p*p^3 + 3*d, p*p^4 + 4*d, p*p^5 + 5*d, p*p^6 + 6*d, p*p^7 + 7*d, p*p^8 + 8*d, p*p^9 + 9*d, p*p^10 + 10*d}] == {True, True, True, True, True, True, True, True, True, True, True}, AppendTo[gapset11d, d]], {d, 0, 10^8, 2}] %Y A209210 Cf. A172367, A209202, A209203, A209204, A209205, A209206, A209207, A209208, A209209. %K A209210 nonn %O A209210 1,1 %A A209210 _Sameen Ahmed Khan_, Mar 06 2012