cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A209219 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

2, 16, 60, 196, 900, 5476, 38232, 287296, 3132576, 37625956, 515992736, 9773299600, 197179936872, 5340055452736, 166631085360000, 6057724646680996, 305548384194976300, 15689243192533764624, 1137621414073872082528
Offset: 1

Views

Author

R. H. Hardin Mar 06 2012

Keywords

Comments

Diagonal of A209224

Examples

			Some solutions for n=4
..0..0..1..1....0..1..1..0....1..1..0..1....1..0..0..1....1..1..0..0
..1..1..0..0....0..1..1..0....0..1..1..0....0..1..1..0....0..1..1..1
..1..1..1..0....1..0..0..1....1..0..1..1....1..1..1..1....1..0..1..1
..0..0..1..1....1..1..0..1....1..1..0..1....1..0..0..1....1..1..0..0
		

A209220 Number of n X 4 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

9, 81, 100, 196, 324, 576, 1024, 1764, 3136, 5476, 9604, 16900, 29584, 51984, 91204, 160000, 280900, 492804, 864900, 1517824, 2663424, 4674244, 8202496, 14394436, 25260676, 44328964, 77792400, 136515856, 239568484, 420414016, 737774244
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Column 4 of A209224.

Examples

			Some solutions for n=4:
  0 1 1 1     0 0 1 1     0 1 1 1     1 0 0 1     0 0 1 1
  0 1 1 0     1 1 0 0     0 0 1 1     0 1 1 0     1 1 1 0
  1 0 0 1     1 1 1 0     1 1 0 0     1 1 1 1     1 1 0 0
  1 1 1 1     0 0 1 1     1 1 0 0     1 0 0 1     0 0 1 1
		

Crossrefs

Cf. A209224.

Formula

Empirical: a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) for n > 8.
Empirical g.f.: x*(9 + 72*x + 10*x^2 + 6*x^3 - 44*x^4 + 28*x^5 - 44*x^6 + 17*x^7) / ((1 - 2*x + x^2 - x^3)*(1 + x - x^3)). - Colin Barker, Jul 08 2018

A209221 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

15, 225, 240, 504, 900, 1776, 3456, 6300, 12656, 24124, 45276, 88400, 170280, 323760, 618496, 1202400, 2300200, 4360824, 8464860, 16284576, 30897024, 59537156, 115023968, 219164204, 419459908, 811024296, 1553149080, 2962595040
Offset: 1

Views

Author

R. H. Hardin Mar 06 2012

Keywords

Comments

Column 5 of A209224

Examples

			Some solutions for n=4
..1..1..1..0..1....1..1..0..1..1....1..1..1..1..1....0..0..1..1..0
..0..0..1..1..0....1..1..0..0..1....1..1..0..0..1....1..1..0..1..1
..1..0..0..1..1....0..0..1..1..0....0..0..1..1..0....1..1..1..0..1
..1..1..1..0..1....1..1..1..1..0....0..0..1..1..1....0..0..1..1..0
		

Formula

Empirical: a(n) = 9*a(n-3) +2*a(n-4) -33*a(n-6) +10*a(n-7) +3*a(n-8) +66*a(n-9) -33*a(n-10) +5*a(n-11) -83*a(n-12) +39*a(n-13) -20*a(n-14) +78*a(n-15) +3*a(n-16) -7*a(n-17) -45*a(n-18) -30*a(n-19) +8*a(n-20) +22*a(n-21) +10*a(n-22) +2*a(n-23) -6*a(n-24) +a(n-25) +a(n-27) for n>29

A209222 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

25, 625, 576, 1296, 2500, 5476, 11664, 22500, 51076, 106276, 213444, 462400, 980100, 2016400, 4194304, 9036036, 18835600, 38588944, 82846404, 174715524, 358420624, 758341444, 1612986244, 3336910756, 6965237764, 14838163344, 31009096836
Offset: 1

Views

Author

R. H. Hardin Mar 06 2012

Keywords

Comments

Column 6 of A209224

Examples

			Some solutions for n=4
..1..0..1..1..0..1....1..1..0..0..1..1....1..0..1..1..1..0....0..1..1..1..0..1
..1..0..0..1..1..0....0..1..1..0..0..1....1..1..0..1..1..1....1..1..1..0..1..1
..0..1..1..0..1..1....1..0..1..1..0..0....0..1..1..0..0..1....1..0..0..1..1..0
..1..1..1..0..0..1....1..1..0..1..1..0....0..0..1..1..1..0....0..1..1..1..0..0
		

Formula

Empirical: a(n) = a(n-2) +15*a(n-3) +2*a(n-4) -6*a(n-5) -107*a(n-6) +34*a(n-7) -6*a(n-8) +419*a(n-9) -280*a(n-10) +147*a(n-11) -1405*a(n-12) +721*a(n-13) -1078*a(n-14) +3560*a(n-15) -277*a(n-16) +1992*a(n-17) -5500*a(n-18) -1545*a(n-19) -2468*a(n-20) +4823*a(n-21) +4816*a(n-22) +4269*a(n-23) -2796*a(n-24) -4899*a(n-25) -4644*a(n-26) +2679*a(n-27) +2205*a(n-28) +2127*a(n-29) -2887*a(n-30) -262*a(n-31) -556*a(n-32) +1789*a(n-33) -451*a(n-34) +245*a(n-35) -528*a(n-36) +226*a(n-37) -18*a(n-38) +82*a(n-39) -33*a(n-40) -6*a(n-41) -16*a(n-42) -a(n-43) +a(n-44) +a(n-45) for n>47

A209223 Number of n X 7 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

40, 1600, 1296, 3312, 6900, 15984, 38232, 80400, 197976, 449228, 1002540, 2382720, 5427180, 12493160, 28565504, 66402540, 153375600, 346691720, 810423876, 1869448176, 4247091288, 9846872812, 22767034560, 52106780512, 119650563196
Offset: 1

Views

Author

R. H. Hardin Mar 06 2012

Keywords

Comments

Column 7 of A209224.

Examples

			Some solutions for n=4
..1..0..0..1..1..0..0....0..0..1..1..0..1..1....1..1..1..0..1..1..0
..0..1..1..0..0..1..1....0..1..1..1..0..0..1....1..1..0..0..1..1..0
..0..1..1..1..0..1..1....1..1..0..0..1..1..0....0..0..1..1..0..0..1
..1..0..0..1..1..0..0....1..0..0..1..1..1..0....0..1..1..1..0..1..1
		

Crossrefs

Cf. A209224.

A209225 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

9, 81, 126, 196, 504, 1296, 3312, 8464, 21712, 55696, 142544, 364816, 934992, 2396304, 6136272, 15713296, 40258384, 103144336, 264177872, 676624144, 1733335632, 4440356496, 11373699024, 29133027856, 74627823952, 191168323984
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Row 4 of A209224.

Examples

			Some solutions for n=4:
  1 1 0 1     0 0 1 1     0 1 1 0     0 1 1 1     0 1 1 1
  1 1 0 0     1 1 0 0     0 1 1 0     0 1 1 0     0 0 1 1
  0 0 1 1     1 1 0 0     1 0 0 1     1 0 0 1     1 1 0 0
  0 0 1 1     0 0 1 1     1 1 0 1     1 1 1 1     1 1 0 0
		

Crossrefs

Cf. A209224.

Formula

Empirical: a(n) = a(n-1) + 4*a(n-3) + 16*a(n-4) for n>7.
Empirical g.f.: x*(9 + 72*x + 45*x^2 + 34*x^3 - 160*x^4 - 1008*x^5 - 784*x^6) / ((1 + 4*x^2)*(1 - x - 4*x^2)). - Colin Barker, Jul 08 2018

A209226 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

13, 169, 234, 324, 900, 2500, 6900, 19044, 52992, 147456, 407808, 1127844, 3135024, 8714304, 24123744, 66781584, 185488056, 515199204, 1427114052, 3953139876, 10974405204, 30466306116, 84427202016, 233961820416, 649289325600
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Row 5 of A209224.

Examples

			Some solutions for n=4:
..0..1..1..0....0..1..1..0....0..1..1..1....0..1..1..0....1..1..1..1
..0..0..1..1....0..1..1..1....0..1..1..0....1..0..0..1....0..0..1..1
..1..0..0..1....1..0..0..1....1..0..0..1....1..1..1..1....1..1..0..0
..1..1..1..0....1..1..0..0....1..0..0..1....0..1..1..0....1..1..0..1
..0..1..1..0....0..1..1..1....0..1..1..0....1..0..0..1....0..0..1..1
		

Crossrefs

Cf. A209224.

Formula

Empirical: a(n) = a(n-1) + 3*a(n-3) + 39*a(n-4) - 21*a(n-5) - 9*a(n-6) - 54*a(n-8) + 27*a(n-9) for n>12.
Empirical g.f.: x*(13 + 156*x + 65*x^2 + 51*x^3 - 438*x^4 - 5420*x^5 - 2032*x^6 + 3243*x^7 + 960*x^8 + 6855*x^9 + 2793*x^10 - 3078*x^11) / ((1 - x - 6*x^2 + 3*x^3)*(1 + 6*x^2 - 3*x^4 - 9*x^6)). - Colin Barker, Jul 09 2018

A209227 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

19, 361, 456, 576, 1776, 5476, 15984, 46656, 143856, 443556, 1312020, 3880900, 11871220, 36312676, 108154648, 322130704, 980104384, 2982033664, 8920216800, 26683222500, 80907908400, 245326052416, 735864237328, 2207251005124
Offset: 1

Views

Author

R. H. Hardin Mar 06 2012

Keywords

Comments

Row 6 of A209224

Examples

			Some solutions for n=4
..0..0..1..1....1..1..1..1....1..1..1..0....0..1..1..1....0..0..1..1
..0..0..1..1....0..0..1..1....0..1..1..0....0..0..1..1....1..1..0..1
..1..1..0..0....1..1..0..0....1..0..0..1....1..1..0..0....1..1..0..0
..1..1..0..1....1..1..0..1....1..1..1..1....1..1..1..1....0..0..1..1
..0..0..1..1....0..0..1..1....0..1..1..0....0..0..1..1....1..1..1..1
..0..1..1..0....0..1..1..0....1..0..0..1....1..1..0..0....1..1..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +3*a(n-3) +71*a(n-4) -125*a(n-5) -25*a(n-6) -56*a(n-7) -1243*a(n-8) +2035*a(n-9) +168*a(n-10) +560*a(n-11) +6152*a(n-12) -9704*a(n-13) -848*a(n-14) -1472*a(n-15) -11056*a(n-16) +16688*a(n-17) +1472*a(n-18) +1536*a(n-19) +6976*a(n-20) -9536*a(n-21) -1024*a(n-22) -1024*a(n-24) +1024*a(n-25) for n>28

A209228 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

28, 784, 896, 1024, 3456, 11664, 38232, 125316, 423384, 1430416, 4755296, 15808576, 53167072, 178810384, 596712128, 1991301376, 6681462272, 22418473984, 74937067264, 250488238144, 839514567296, 2813643921664, 9412504049664
Offset: 1

Views

Author

R. H. Hardin Mar 06 2012

Keywords

Comments

Row 7 of A209224

Examples

			Some solutions for n=4
..1..0..1..1....1..1..1..1....0..0..1..1....0..0..1..1....1..0..1..1
..0..0..1..1....0..1..1..0....0..0..1..1....1..1..1..1....0..1..1..1
..1..1..0..0....1..0..0..1....1..1..0..0....1..1..0..0....1..1..0..0
..1..1..1..0....1..0..0..1....1..1..1..1....0..0..1..1....1..0..0..1
..0..0..1..1....0..1..1..0....0..0..1..1....1..1..1..1....0..0..1..1
..1..1..0..1....1..1..1..0....1..1..0..0....1..1..0..0....0..1..1..0
..1..1..0..0....1..0..0..1....1..1..0..0....0..0..1..1....1..1..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-3) +84*a(n-4) -128*a(n-5) -44*a(n-6) -144*a(n-7) -1872*a(n-8) +2504*a(n-9) +864*a(n-10) +1088*a(n-11) +16128*a(n-12) -19968*a(n-13) -5632*a(n-14) -2816*a(n-15) -57344*a(n-16) +66560*a(n-17) +11264*a(n-18) +4096*a(n-19) +77824*a(n-20) -83968*a(n-21) -8192*a(n-22) -32768*a(n-24) +32768*a(n-25) for n>28
Showing 1-9 of 9 results.