A209236 List of integers m>0 with m-1 and m+1 both prime, and m-2, m, m+2 all practical.
4, 6, 18, 30, 198, 462, 1482, 2550, 3330, 4422, 9042, 11778, 26862, 38610, 47058, 60258, 62130, 65538, 69498, 79902, 96222, 106782, 124542, 143262, 149058, 151902, 184830, 200382, 208962, 225342, 237690, 249858, 251262, 295038, 301182, 312702, 345462, 348462
Offset: 1
Keywords
Examples
a(3)=18 since {17,19} is a twin prime pair and 16, 18, 20 are practical numbers.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arxiv:1211.1588 [math.NT], 2012-2017.
Programs
-
Mathematica
f[n_] := f[n] = FactorInteger[n]; Pow[n_,i_] := Pow[n,i] = Part[Part[f[n],i],1]^(Part[Part[f[n],i],2]); Con[n_] := Con[n] = Sum[If[Part[Part[f[n],s+1],1] <= DivisorSigma[1, Product[Pow[n,i], {i,1,s}]] +1, 0, 1], {s,1,Length[f[n]]-1}]; pr[n_] := pr[n] = n>0 && (n<3 || Mod[n,2] + Con[n]==0); n=0; t = {}; Do[If[PrimeQ[Prime[k]+2] == True && pr[Prime[k]-1] == True && pr[Prime[k]+1] == True && pr[Prime[k]+3] == True, n = n+1; AppendTo[t, Prime[k]+1]], {k, 100}]; t
-
PARI
o=3;forprime(p=5,,(2+o==o=p)||next; is_A005153(p-3) & is_A005153(p-1) & is_A005153(p+1) & print1(p-1,",")) \\ M. F. Hasler, Jan 13 2013
Comments