cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209242 The largest fixed value (neither happy nor sad) in base n.

This page as a plain text file.
%I A209242 #28 Aug 01 2021 12:55:50
%S A209242 8,1,18,1,45,52,50,1,72,125,160,1,128,1,261,260,200,1,425,405,490,1,
%T A209242 338,1,657,628,450,848,936,845,1000,832,648,1,1233,1377,800,1,1450,
%U A209242 1445,1813,1341,1058,1856,2125,1844,1250,1525,1352,2205,2560,1,2873,1,3200
%N A209242 The largest fixed value (neither happy nor sad) in base n.
%C A209242 A number is a fixed value if it is the sum of its own squared digits. Such values >1 are the only numbers that are neither happy (A007770) nor unhappy (A031177) in that base.
%C A209242 The number of fixed values in base B (A193583) is equal to one less than the number of divisors of (1+B^2) (Beardon, 1998, Theorem 3.1).
%C A209242 No fixed point has more than 2 digits in base B, and the two-digit number a+bB must satisfy the condition that (2a-1)^2+(2b-B)^2=1+B^2 (Beardon, 1998, Theorem 2.5). Since there are a finite number of ways to express 1+B^2 as the sum of two squares (A002654), this limits the search space.
%C A209242 Because fixed points have a maximum value of B^2-1 in base B, there are a large number of solutions near perfect squares, x^2. Surprisingly, there are also a large number of points near "half-squares", (x+.5)^2. See "Ulam spiral" in the links.
%H A209242 Christian N. K. Anderson, <a href="/A209242/a209242_1.txt">All fixed values</a> in base n for n=3..10000
%H A209242 Christian N. K. Anderson, <a href="/A209242/a209242.gif">Ulam spiral of maximum fixed values in base n</a> for=3..1000
%H A209242 Alan F. Beardon, <a href="http://www.jstor.org/stable/3619884">Sums of Squares of Digits</a>, The Mathematical Gazette,  82(1998), 379-388.
%e A209242 a(7)=45 because in base 7, 45 is 63 and 6^2+3^2=45. The other fixed values in base 7 are 32, 25, 10 and (as always) 1.
%o A209242 (R) #ya=number of fixed points, yb=values of those fixed points
%o A209242 library(gmp); ya=rep(0,200); yb=vector("list",200)
%o A209242 for(B in 3:200) {
%o A209242   w=1+as.bigz(B)^2
%o A209242   ya[B]=prod(table(as.numeric(factorize(w)))+1)-1
%o A209242   x=1; y=0; fixpt=c()
%o A209242   if(ya[B]>1) {
%o A209242     while(2*x^2<w) {
%o A209242       if(issquare((y=as.numeric(w-x^2)))) {
%o A209242         y=sqrt(y)
%o A209242         av=(1+rep(c(-1,-1,1,1),2)*rep(c(x,y),e=4))/2
%o A209242         bv=(B+rep(c(-1,1),4)*rep(c(y,x),e=4))/2
%o A209242         ix=av>=0 & av<B & bv>=0 & bv<B & !(av==0 & bv==0) & isint(av)
%o A209242         fixpt=c(fixpt,(av+B*bv)[ix])
%o A209242       }
%o A209242       x=x+1
%o A209242     }
%o A209242   } else fixpt=1
%o A209242   yb[[B]]=sort(unique(fixpt))
%o A209242 }
%o A209242 sapply(yb,max)
%o A209242 (Python)
%o A209242 from sympy.ntheory.digits import digits
%o A209242 def ssd(n, b): return sum(d**2 for d in digits(n, b)[1:])
%o A209242 def a(n):
%o A209242     m = n**2 - 1
%o A209242     while m != ssd(m, n): m -= 1
%o A209242     return m
%o A209242 print([a(n) for n in range(3, 58)]) # _Michael S. Branicky_, Aug 01 2021
%Y A209242 Cf. A007770, A031177.
%Y A209242 Cf. A193583.
%K A209242 nonn,base
%O A209242 3,1
%A A209242 _Christian N. K. Anderson_, Apr 22 2013
%E A209242 Program improved and sequence extended by _Christian N. K. Anderson_, Apr 25 2013.