cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209245 Main diagonal of the triple recurrence x(i,j,k) = x(i-1,j,k) + x(i,j-1,k) + x(i,j,k-1) with x(i,j,k) = 1 if 0 in {i,j,k}.

This page as a plain text file.
%I A209245 #35 Jun 03 2018 02:08:55
%S A209245 1,3,33,543,10497,220503,4870401,111243135,2602452993,61985744967,
%T A209245 1497148260033,36566829737727,901314269530113,22385640256615743,
%U A209245 559574590912019457,14065064484334380543,355222860485671141377,9008982166319523972903,229325469394627488082497
%N A209245 Main diagonal of the triple recurrence x(i,j,k) = x(i-1,j,k) + x(i,j-1,k) + x(i,j,k-1) with x(i,j,k) = 1 if 0 in {i,j,k}.
%C A209245 Level sums are defined as the sum of x(i,j,k) with i,j,k >= 0 and i+j+k = n. This gives 3*A164039(n-1) for n>0.
%C A209245 Slice x(1,j,k) with j,k >= 0 of the cube begins:
%C A209245   1,  1,  1,   1,   1,    1,    1,    1, ... A000012
%C A209245   1,  3,  5,   7,   9,   11,   13,   15, ... A005408
%C A209245   1,  5, 11,  19,  29,   41,   55,   71, ... A028387
%C A209245   1,  7, 19,  39,  69,  111,  167,  239, ... A108766(k+1)
%C A209245   1,  9, 29,  69, 139,  251,  419,  659, ...
%C A209245   1, 11, 41, 111, 251,  503,  923, 1583, ...
%C A209245   1, 13, 55, 167, 419,  923, 1847, 3431, ...
%C A209245   1, 15, 71, 239, 659, 1583, 3431, 6863, ...
%C A209245 The main diagonal of the slice is A134760.
%H A209245 Alois P. Heinz, <a href="/A209245/b209245.txt">Table of n, a(n) for n = 0..300</a>
%F A209245 a(n) = x(n,n,n) with x(i,j,k) = 1 if 0 in {i,j,k} and x(i,j,k) = x(i-1,j,k) + x(i,j-1,k) + x(i,j,k-1) else.
%F A209245 a(n) ~ 3^(3*n+1/2) / (8*Pi*n). - _Vaclav Kotesovec_, Sep 07 2014
%p A209245 a:= proc(n) option remember; `if`(n<2, 2*n+1,
%p A209245       ((888-3020*n+3668*n^2-1912*n^3+364*n^4) *a(n-1)
%p A209245        +3*(3*n-4)*(7*n-5)*(2*n-3)*(3*n-5) *a(n-2)) /
%p A209245        ((2*n-1)*(7*n-12)*(n-1)^2))
%p A209245     end:
%p A209245 seq(a(n), n=0..20);  # _Alois P. Heinz_, Jan 17 2013
%t A209245 b[] = 0; b[args__] := b[args] = If[{args}[[1]] == 0, 1, Sum[b @@ Sort[ ReplacePart[{args}, i -> {args}[[i]] - 1]], {i, 1, Length[{args}]}]];
%t A209245 a[n_] := b @@ Table[n, 3];
%t A209245 Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Jun 03 2018, from _Alois P. Heinz_'s Maple code for A210472 *)
%Y A209245 Cf. A164039, A134760, A209288.
%Y A209245 Column k=3 of A210472. - _Alois P. Heinz_, Jan 23 2013
%K A209245 nonn
%O A209245 0,2
%A A209245 _Jon Perry_, Jan 13 2013