A209253 Number of ways to write 2n-1 as the sum of a Sophie Germain prime and a practical number.
0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 4, 3, 5, 2, 3, 4, 4, 4, 5, 2, 3, 5, 2, 4, 7, 4, 2, 6, 2, 5, 6, 2, 2, 6, 1, 3, 7, 4, 3, 7, 4, 5, 8, 2, 3, 8, 3, 3, 8, 4, 4, 7, 4, 5, 8, 3, 4, 7, 1, 5, 9, 5, 3, 9, 3, 4, 8, 4, 3, 9, 3, 5, 8, 2, 2, 9, 4, 3, 8, 4, 4, 10, 1, 3, 10, 5, 4, 10, 4, 3, 9, 5, 5, 10, 4
Offset: 1
Keywords
Examples
a(40)=1 since 2*40-1=23+56 with 23 a Sophie Germain prime and 56 a practical number.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arxiv:1211.1588 [math.NT], 2012-2017
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n] Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2]) Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}] pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0) a[n_]:=a[n]=Sum[If[PrimeQ[2Prime[k]+1]==True&&pr[2n-1-Prime[k]]==True,1,0],{k,1,PrimePi[2n-1]}] Do[Print[n," ",a[n]],{n,1,100}]
Comments