This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209254 #14 Dec 05 2018 05:11:00 %S A209254 0,1,1,2,2,2,3,1,2,2,3,2,4,3,1,3,1,1,4,2,5,5,1,4,1,2,4,3,1,6,3,4,4,5, %T A209254 1,6,7,2,4,3,4,2,4,5,1,2,3,7,5,2,4,8,4,6,5,1,2,2,3,8,3,1,5,6,2,4,7,4, %U A209254 8,4,2,7,6,3,4,3,1,6,6,1,7,6,2,8,9,5,7,3,3,10,7,3,9,14,1,9,4,3,4,6 %N A209254 Number of ways to write 2n-1 = p+q with q practical, p and p^4+q^4 both prime. %C A209254 Conjecture: a(n)>0 for all n>1. %C A209254 Zhi-Wei Sun also conjectured that any odd integer greater than one can be written as p+q with q practical, and p and p^2+q^2 both prime. This is a refinement of Ming-Zhi Zhang's problem related to A036468. %H A209254 Zhi-Wei Sun, <a href="/A209254/b209254.txt">Table of n, a(n) for n = 1..10000</a> %H A209254 G. Melfi, <a href="http://dx.doi.org/10.1006/jnth.1996.0012">On two conjectures about practical numbers</a>, J. Number Theory 56 (1996) 205-210 [<a href="http://www.ams.org/mathscinet-getitem?mr=1370203">MR96i:11106</a>]. %H A209254 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1211.1588">Conjectures involving primes and quadratic forms</a>, arxiv:1211.1588 [math.NT], 2012-2017. %e A209254 a(8)=1 since 2*8-1=11+4 with 4 practical, 11 and 11^4+4^4=14897 both prime. %t A209254 f[n_]:=f[n]=FactorInteger[n] %t A209254 Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2]) %t A209254 Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}] %t A209254 pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0) %t A209254 a[n_]:=a[n]=Sum[If[pr[2n-1-Prime[k]]==True&&PrimeQ[Prime[k]^4+(2n-1-Prime[k])^4]==True,1,0],{k,1,PrimePi[2n-1]}] %t A209254 Do[Print[n," ",a[n]],{n,1,100}] %Y A209254 Cf. A000040, A005153, A208243, A208244, A208246, A209253. %K A209254 nonn %O A209254 1,4 %A A209254 _Zhi-Wei Sun_, Jan 14 2013