This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209268 #33 Feb 16 2025 08:33:16 %S A209268 1,2,3,4,6,5,10,7,15,9,21,8,28,14,36,11,45,20,55,13,66,27,78,12,91,35, %T A209268 105,19,120,44,136,16,153,54,171,26,190,65,210,18,231,77,253,34,276, %U A209268 90,300,17,325,104,351,43,378,119,406,25,435,135,465,53,496,152 %N A209268 Inverse permutation A054582. %C A209268 Permutation of the natural numbers. %C A209268 a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. %H A209268 Boris Putievskiy, <a href="/A209268/b209268.txt">Table of n, a(n) for n = 1..10000</a> %H A209268 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012. %H A209268 R. J. Mathar, <a href="http://oeis.org/wiki/User:R._J._Mathar/oeisPy/oeisPy/oeis_bulk.py">oeisPy</a> %H A209268 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/PairingFunction.html">MathWorld: Pairing functions</a> %H A209268 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A209268 a(n) = (((A003602)+A007814(n))^2 - A007814(n) + A003602(n))/2. %F A209268 a(n) = ((x+y)^2-x+y)/2, where x = max {k: 2^k | n}, y = (n+2^x)/2^(x+1). %e A209268 The start of the sequence for n = 1..32 as table, distributed by exponent of highest power of 2 dividing n: %e A209268 | Exponent of highest power of 2 dividing n %e A209268 n |-------------------------------------------------- %e A209268 | 0 1 2 3 4 5 ... %e A209268 ------------------------------------------------------ %e A209268 1 |....1 %e A209268 2 |...........2 %e A209268 3 |....3 %e A209268 4 |..................4 %e A209268 5 |....6 %e A209268 6 |...........5 %e A209268 7 |...10 %e A209268 8 |..........................7 %e A209268 9 |...15 %e A209268 10 |...........9 %e A209268 11 |...21 %e A209268 12 |..................8 %e A209268 13 |...28 %e A209268 14 |..........14 %e A209268 15 |...36 %e A209268 16 |................................11 %e A209268 17 |...45 %e A209268 18 |..........20 %e A209268 19 |...55 %e A209268 20 |.................13 %e A209268 21 |...66 %e A209268 22 |..........27 %e A209268 23 |...78 %e A209268 24 |................................12 %e A209268 25 |...91 %e A209268 26 |..........35 %e A209268 27 |..105 %e A209268 28 |.................19 %e A209268 29 |..120 %e A209268 30 |..........44 %e A209268 31 |..136 %e A209268 32 |.........................................16 %e A209268 . . . %e A209268 Let r_c be number row inside the column number c. %e A209268 r_c = (n+2^c)/2^(c+1). %e A209268 The column number 0 contains numbers r_0*(r_0+1)/2, A000217, %e A209268 The column number 1 contains numbers r_1*(r_1+3)/2, A000096, %e A209268 The column number 2 contains numbers r_2*(r_2+5)/2 + 1, A034856, %e A209268 The column number 3 contains numbers r_3*(r_3+7)/2 + 3, A055998, %e A209268 The column number 4 contains numbers r_4*(r_4+9)/2 + 6, A046691. %t A209268 a[n_] := (v = IntegerExponent[n, 2]; (1/2)*(((1/2)*(n/2^v + 1) + v)^2 + (1/2)*(n/2^v + 1) - v)); Table[a[n], {n, 1, 55}] (* _Jean-François Alcover_, Jan 15 2013, from 1st formula *) %o A209268 (Python) %o A209268 f = open("result.csv", "w") %o A209268 def A007814(n): %o A209268 ### author Richard J. Mathar 2010-09-06 (Start) %o A209268 ### http://oeis.org/wiki/User:R._J._Mathar/oeisPy/oeisPy/oeis_bulk.py %o A209268 a = 0 %o A209268 nshft = n %o A209268 while (nshft %2 == 0): %o A209268 a += 1 %o A209268 nshft >>= 1 %o A209268 return a %o A209268 ###(End) %o A209268 for n in range(1,10001): %o A209268 x = A007814(n) %o A209268 y = (n+2**x)/2**(x+1) %o A209268 m = ((x+y)**2-x+y)/2 %o A209268 f.write('%d;%d;%d;%d;\n' % (n, x, y, m)) %o A209268 f.close() %Y A209268 Cf. A054582, A003602, A007814, A000217, A000096, A034856, A055998, A046691, A014132. %K A209268 nonn %O A209268 1,2 %A A209268 _Boris Putievskiy_, Jan 15 2013