This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209274 #26 Jan 05 2018 14:45:22 %S A209274 1,2,3,4,5,6,8,9,9,10,16,17,15,14,15,32,33,27,22,20,21,64,65,51,38,30, %T A209274 27,28,128,129,99,70,50,39,35,36,256,257,195,134,90,63,49,44,45,512, %U A209274 513,387,262,170,111,77,60,54,55,1024,1025,771,518,330,207,133,92,72,65,66 %N A209274 Table T(n,k) = n*(n+2^k-1)/2, n, k > 0 read by antidiagonals. %C A209274 Column number 1 A000217 n*(n+1)/2, %C A209274 column number 2 A000096 n*(n+3)/2, %C A209274 column number 3 A055999 n*(n+7)/2, %C A209274 column number 4 A056121 n*(n+15)/2, %C A209274 column number 5 A132758 n*(n+31)/2. %C A209274 Row number 1 A000079 2^k, %C A209274 row number 2 A000051 2^k + 1. %H A209274 Boris Putievskiy, <a href="/A209274/b209274.txt">Rows n = 1..140 of triangle, flattened</a> %H A209274 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %F A209274 a(n) = A002260(n)*(A002260(n)+2^A004736(n)-1)/2. %F A209274 a(n) = i*(i+2^j-1)/2, %F A209274 where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). %e A209274 The start of the sequence as table: %e A209274 1....2...4...8...16...32...64... %e A209274 3....5...9..17...33...65..129... %e A209274 6....9..15..27...51...99..195... %e A209274 10..14..22..38...70..134..262... %e A209274 15..20..30..50...90..170..330... %e A209274 21..27..39..63..111..207..399... %e A209274 28..35..49..77..133..245..469... %e A209274 . . . %e A209274 The start of the sequence as triangle array read by rows: %e A209274 1; %e A209274 2,3; %e A209274 4,5,6; %e A209274 8,9,9,10; %e A209274 16,17,15,14,15; %e A209274 32,33,27,22,20,21; %e A209274 64,65,51,38,30,27,28; %e A209274 . . . %e A209274 Row number r contains r numbers. %t A209274 b[n_] := n - d[n]*(d[n] + 1)/2; c[n_] := (d[n]^2 + 3*d[n] + 4)/2 - n; d[n_] := Floor[(-1 + Sqrt[8*n - 7])/2]; a[n_] := b[n]*(b[n] + 2^c[n] - 1)/2; Table[a[n], {n, 1, 50}] (* _G. C. Greubel_, Jan 04 2018 *) %o A209274 (Python) %o A209274 t=int((math.sqrt(8*n-7) - 1)/ 2) %o A209274 i=n-t*(t+1)/2 %o A209274 j=(t*t+3*t+4)/2-n %o A209274 result = i*(i+2**j-1)/2 %o A209274 (PARI) a(n, k) = n*(n+2^k-1)/2 %o A209274 array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print("")) %o A209274 /* Print initial 7 rows and 8 columns of table as follows */ %o A209274 array(7, 8) \\ _Felix Fröhlich_, Jan 05 2018 %Y A209274 Cf. A000217, A000096, A055999, A056121, A132758, A000079, A000051. %K A209274 nonn,tabl %O A209274 1,2 %A A209274 _Boris Putievskiy_, Jan 15 2013