cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209278 Second inverse function (numbers of rows) for pairing function A185180.

This page as a plain text file.
%I A209278 #29 Feb 16 2025 08:33:16
%S A209278 1,2,1,2,3,1,3,2,4,1,3,4,2,5,1,4,3,5,2,6,1,4,5,3,6,2,7,1,5,4,6,3,7,2,
%T A209278 8,1,5,6,4,7,3,8,2,9,1,6,5,7,4,8,3,9,2,10,1,6,7,5,8,4,9,3,10,2,11,1
%N A209278 Second inverse function (numbers of rows) for pairing function A185180.
%H A209278 Boris Putievskiy, <a href="/A209278/b209278.txt">Rows n = 1..140 of triangle, flattened</a>
%H A209278 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%H A209278 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a>
%F A209278 a(n) = floor((A003056(n)+3)/2) + floor(A002260(n)/2)*(-1)^(A002260(n)+A003056(n)).
%F A209278 a(n)= floor((t+3)/2)+ floor(i/2)*(-1)^(i+t),
%F A209278 where t=floor((-1+sqrt(8*n-7))/2), i=n-t*(t+1)/2.
%F A209278 T(r,2s-1)=s, T(r,2s)= r+s. (When read as square array by antidiagonals.)
%e A209278 The start of the sequence as table T(r,s) r,s >0 read by antidiagonals:
%e A209278 1...2...2...3...3...4...4...5...
%e A209278 1...3...2...4...3...5...4...6...
%e A209278 1...4...2...5...3...6...4...7...
%e A209278 1...5...2...6...3...7...4...8...
%e A209278 1...6...2...7...3...8...4...9...
%e A209278 1...7...2...8...3...9...4..10...
%e A209278 1...8...2...9...3..10...4..11...
%e A209278 . . .
%e A209278 The start of the sequence as triangle array read by rows:
%e A209278 1;
%e A209278 2, 1;
%e A209278 2, 3, 1;
%e A209278 3, 2, 4, 1;
%e A209278 3, 4, 2, 5, 1;
%e A209278 4, 3, 5, 2, 6, 1;
%e A209278 4, 5, 3, 6, 2, 7, 1;
%e A209278 5, 4, 6, 3, 7, 2, 8, 1;
%e A209278 . . .
%e A209278 Row number r contains permutation numbers form 1 to r.
%e A209278 If r is odd (r+1)/2, (r+1)/2 +1, (r+1)/2 -1, ... 2, r, 1.
%e A209278 If r is even r/2 + 1, r/2, r/2 + 2, ...  2, r, 1.
%t A209278 T[r_, s_] := If[OddQ[s], (s+1)/2, r + s/2];
%t A209278 Table[T[r-s+1, s], {r, 1, 11}, {s, r, 1, -1}] // Flatten (* _Jean-François Alcover_, Nov 19 2019 *)
%o A209278 (Python)
%o A209278 t=int((math.sqrt(8*n-7) - 1)/ 2)
%o A209278 i=n-t*(t+1)/2
%o A209278 result=int((t+3)/2)+int(i/2)*(-1)**(i+t)
%o A209278 (PARI) T(r,s)=s\2+if(bittest(s,0),1,r) \\ - _M. F. Hasler_, Jan 15 2013
%Y A209278 Cf. A185180, A092542, A092543.
%K A209278 nonn,tabl
%O A209278 1,2
%A A209278 _Boris Putievskiy_, Jan 15 2013