cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209293 Inverse permutation of A185180.

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 8, 9, 7, 10, 13, 12, 14, 11, 15, 18, 19, 17, 20, 16, 21, 25, 24, 26, 23, 27, 22, 28, 32, 33, 31, 34, 30, 35, 29, 36, 41, 40, 42, 39, 43, 38, 44, 37, 45, 50, 51, 49, 52, 48, 53, 47, 54, 46, 55, 61, 60, 62, 59, 63, 58, 64, 57, 65, 56, 66, 72, 73, 71, 74, 70, 75, 69, 76, 68, 77, 67
Offset: 1

Views

Author

Boris Putievskiy, Jan 16 2013

Keywords

Comments

Permutation of the natural numbers. a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k) by diagonals. The order of the list
if n is odd - T(n-1,2),T(n-3,4),...,T(2,n-1),T(1,n),T(3,n-2),...T(n,1).
if n is even - T(n-1,2),T(n-3,4),...,T(3,n-2),T(1,n),T(2,n-1),...T(n,1).
Table T(n,k) contains:
Column number 1 A000217,
column number 2 A000124,
column number 3 A000096,
column number 4 A152948,
column number 5 A034856,
column number 6 A152950,
column number 7 A055998.
Row number 1 A000982,
row number 2 A097063.

Examples

			The start of the sequence as table:
  1....2...5...8..13..18...25...32...41...
  3....4...9..12..19..24...33...40...51...
  6....7..14..17..26..31...42...49...62...
  10..11..20..23..34..39...52...59...74...
  15..16..27..30..43..48...63...70...87...
  21..22..35..38..53..58...75...82..101...
  28..29..44..47..64..69...88...95..116...
  36..37..54..57..76..81..102..109..132...
  45..46..65..68..89..94..117..124..149...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  2,3;
  5,4,6;
  8,9,7,10;
  13,12,14,11,15;
  18,19,17,20,16,21;
  25,24,26,23,27,22,28;
  32,33,31,34,30,35,29,36;
  41,40,42,39,43,38,44,37,45;
  . . .
Row number r contains permutation from r numbers:
if r is odd  ceiling(r^2/2), ceiling(r^2/2)+1, ceiling(r^2/2)-1, ceiling(r^2/2)+2, ceiling(r^2/2)-2,...r*(r+1)/2;
if r is even ceiling(r^2/2), ceiling(r^2/2)-1, ceiling(r^2/2)+1, ceiling(r^2/2)-2, ceiling(r^2/2)+2,...r*(r+1)/2;
		

Crossrefs

Programs

  • Mathematica
    max = 10; row[n_] := Table[Ceiling[(n + k - 1)^2/2] + If[OddQ[k], 1, -1]*Floor[n/2], {k, 1, max}]; t = Table[row[n], {n, 1, max}]; Table[t[[n - k + 1, k]], {n, 1, max}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 17 2013 *)
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    m1=int((i+j)/2)+int(i/2)*(-1)**(i+t+1)
    m2=int((i+j+1)/2)+int(i/2)*(-1)**(i+t)
    m=(m1+m2-1)*(m1+m2-2)/2+m1

Formula

As table T(n,k) read by antidiagonals
T(n,k) = n*n/2+4*(floor((k-1)/2)+1)*n+ceiling((k-1)^2/2), n,k > 0.
As linear sequence
a(n) = (m1+m2-1)*(m1+m2-2)/2+m1, where
m1 = int((i+j)/2)+int(i/2)*(-1)^(i+t+1),
m2 = int((i+j+1)/2)+int(i/2)*(-1)^(i+t),
t = int((math.sqrt(8*n-7) - 1)/ 2),
i = n-t*(t+1)/2,
j = (t*t+3*t+4)/2-n.