This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209301 #24 Feb 18 2025 04:13:32 %S A209301 1,3,1,2,4,3,1,2,3,5,4,3,1,2,3,4,6,5,4,3,1,2,3,4,5,7,6,5,4,3,1,2,3,4, %T A209301 5,6,8,7,6,5,4,3,1,2,3,4,5,6,7,9,8,7,6,5,4,3,1,2,3,4,5,6,7,8,10,9,8,7, %U A209301 6,5,4,3,1,2,3,4,5,6,7,8,9,11,10,9,8,7 %N A209301 Table T(n,k) n, k > 0, T(n,k)=n-k+1, if n>=k, T(n,k)=k-n+2, if n < k. Table read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). %C A209301 In general, let m be natural number. The first column of the table T(n,1) is the sequence of the natural numbers A000027. In all columns with number k (k > 1) the segment with the length of (k-1): {m+k-2, m+k-3, ..., m} shifts the sequence A000027. For m=1 the result is A004739, for m=2 the result is A004738. This sequence is result for m=3. %H A209301 Boris Putievskiy, <a href="/A209301/b209301.txt">Rows n = 1..140 of triangle, flattened</a> %H A209301 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012. %F A209301 For the general case %F A209301 a(n) = m*v+(2*v-1)*(t*t-n)+t, %F A209301 where %F A209301 t = floor(sqrt(n)-1/2)+1, %F A209301 v = floor((n-1)/t)-t+1. %F A209301 For m=3 %F A209301 a(n) = 3*v+(2*v-1)*(t*t-n)+t, %F A209301 where %F A209301 t = floor(sqrt(n)-1/2)+1, %F A209301 v = floor((n-1)/t)-t+1. %e A209301 The start of the sequence as table for the general case: %e A209301 1, m, m+1, m+2, m+3, m+4, m+5, ... %e A209301 2, 1, m, m+1, m+2, m+3, m+4, ... %e A209301 3, 2, 1, m, m+1, m+2, m+3, ... %e A209301 4, 3, 2, 1, m, m+1, m+2, ... %e A209301 5, 4, 3, 2, 1, m, m+1, ... %e A209301 6, 5, 4, 3, 2, 1, m, ... %e A209301 7, 6, 5, 4, 3, 2, 1, ... %e A209301 ... %e A209301 The start of the sequence as triangle array read by rows for the general case: %e A209301 1; %e A209301 m,1,2; %e A209301 m+1,m,1,2,3; %e A209301 m+2,m+1,m,1,2,3,4; %e A209301 m+3,m+2,m+1,m,1,2,3,4,5; %e A209301 m+4, m+3,m+2,m+1,m,1,2,3,4,5,6; %e A209301 m+5, m+4, m+3,m+2,m+1,m,1,2,3,4,5,6,7; %e A209301 ... %e A209301 Row number r contains 2*r -1 numbers: m+r-2, m+r-1,...m,1,2,...r. %e A209301 The start of the sequence as triangle array read by rows for m=3: %e A209301 1; %e A209301 3,1,2; %e A209301 4,3,1,2,3; %e A209301 5,4,3,1,2,3,4; %e A209301 6,5,4,3,1,2,3,4,5; %e A209301 7,6,5,4,3,1,2,3,4,5,6; %e A209301 8,7,6,5,4,3,1,2,3,4,5,6,7; %e A209301 ... %o A209301 (Python) %o A209301 t=int((math.sqrt(n))-0.5)+1 %o A209301 v=int((n-1)/t)-t+1 %o A209301 result=k*v+(2*v-1)*(t**2-n)+t %Y A209301 Cf. A187760, A004739, A004738. %K A209301 nonn,tabl %O A209301 1,2 %A A209301 _Boris Putievskiy_, Jan 18 2013