This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209302 #28 Jun 09 2025 00:52:50 %S A209302 1,2,3,2,3,4,5,4,3,4,5,6,7,6,5,4,5,6,7,8,9,8,7,6,5,6,7,8,9,10,11,10,9, %T A209302 8,7,6,7,8,9,10,11,12,13,12,11,10,9,8,7,8,9,10,11,12,13,14,15,14,13, %U A209302 12,11,10,9,8,9,10,11,12,13,14,15,16,17,16,15,14 %N A209302 Table T(n,k) = max{n+k-1, n+k-1} n, k > 0, read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). %H A209302 Boris Putievskiy, <a href="/A209302/b209302.txt">Rows n = 1..140 of triangle, flattened</a> %H A209302 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012. %F A209302 In general, let m be a natural number. Table T(n,k) = max{m*n+k-m, n+m*k-m}. For the general case, %F A209302 a(n) = (m+1)*sqrt(n-1) + 1 - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1))|. %F A209302 For m=1, %F A209302 a(n) = 2*sqrt(n-1) + 1 - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1))|. %F A209302 a(n) = t + |t^2 - n|, where t = floor(sqrt(n)+1/2). - _Ridouane Oudra_, May 07 2019 %e A209302 The start of the sequence as a table for the general case: %e A209302 1 m+1 2*m+1 3*m+1 4*m+1 5*m+1 6*m+1 ... %e A209302 m+1 m+2 2*m+2 3*m+2 4*m+2 5*m+2 6*m+2 ... %e A209302 2*m+1 2*m+2 2*m+3 3*m+3 4*m+3 5*m+3 6*m+3 ... %e A209302 3*m+1 3*m+2 3*m+3 3*m+4 4*m+4 5*m+4 6*m+4 ... %e A209302 4*m+1 4*m+2 4*m+3 4*m+4 4*m+5 5*m+5 6*m+5 ... %e A209302 5*m+1 5*m+2 5*m+3 5*m+4 5*m+5 5*m+6 6*m+6 ... %e A209302 6*m+1 6*m+2 6*m+3 6*m+4 6*m+5 6*m+6 6*m+7 ... %e A209302 ... %e A209302 The start of the sequence as a triangular array read by rows for general case: %e A209302 1; %e A209302 m+1, m+2, m+1; %e A209302 2*m+1, 2*m+2, 2*m+3, 2*m+2, 2*m+1; %e A209302 3*m+1, 3*m+2, 3*m+3, 3*m+4, 3*m+3, 3*m+2, 3*m+1; %e A209302 4*m+1, 4*m+2, 4*m+3, 4*m+4, 4*m+5, 4*m+4, 4*m+3, 4*m+2, 4*m+1; %e A209302 ... %e A209302 Row r contains 2*r-1 terms: r*m+1, r*m+2, ... r*m+r, r*m+r+1, r*m+r, ..., r*m+2, r*m+1. %e A209302 The start of the sequence as triangle array read by rows for m=1: %e A209302 1; %e A209302 2, 3, 2; %e A209302 3, 4, 5, 4, 3; %e A209302 4, 5, 6, 7, 6, 5, 4; %e A209302 5, 6, 7, 8, 9, 8, 7, 6, 5; %e A209302 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6; %e A209302 7, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 8, 7; %e A209302 ... %o A209302 (Python) %o A209302 result = 2*int(math.sqrt(n-1)) - abs(n-int(math.sqrt(n-1))**2 - int(math.sqrt(n-1)) -1) +1 %o A209302 (Python) %o A209302 from math import isqrt %o A209302 def A209302(n): return (k:=(m:=isqrt(n))+(n-m*(m+1)>=1))+abs(k**2-n) # _Chai Wah Wu_, Jun 08 2025 %Y A209302 Cf. A187760. %K A209302 nonn,tabf %O A209302 1,2 %A A209302 _Boris Putievskiy_, Jan 18 2013