A209312
Number of practical numbers p
0, 0, 1, 2, 2, 2, 2, 1, 2, 3, 2, 4, 1, 2, 3, 3, 3, 4, 2, 4, 3, 4, 3, 6, 3, 2, 3, 4, 4, 6, 3, 5, 3, 4, 5, 8, 3, 2, 5, 5, 4, 7, 4, 7, 4, 2, 4, 11, 3, 1, 4, 7, 4, 7, 6, 7, 3, 4, 5, 12, 3, 2, 4, 8, 7, 8, 5, 9, 4, 2, 6, 14, 5, 2, 6, 7, 7, 9, 5, 9, 4, 4, 5, 14, 8, 2, 5, 8, 7, 10, 6, 9, 6, 2, 8, 15, 5, 3, 5, 8
Offset: 1
Keywords
Examples
a(8)=1 since 4, 8-4 and 8+4 are all practical. a(13)=1 since 6 is practical, and 13-6 and 13+6 are both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
Crossrefs
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n] Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]) Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}] pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0) a[n_]:=a[n]=Sum[If[pr[p]==True&&((PrimeQ[n-p]==True&&PrimeQ[n+p]==True)||(pr[n-p]==True&&pr[n+p]==True)),1,0],{p,1,n-1}] Do[Print[n," ",a[n]],{n,1,100}]
-
PARI
A209312(n)=sum(p=1,n-1, is_A005153(p) && ((is_A005153(n-p) && is_A005153(n+p)) || (isprime(n-p) && isprime(n+p)))) \\ (Could be made more efficient by separating the case of odd and even n.) - M. F. Hasler, Jan 19 2013
Comments