cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209312 Number of practical numbers p

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 2, 1, 2, 3, 2, 4, 1, 2, 3, 3, 3, 4, 2, 4, 3, 4, 3, 6, 3, 2, 3, 4, 4, 6, 3, 5, 3, 4, 5, 8, 3, 2, 5, 5, 4, 7, 4, 7, 4, 2, 4, 11, 3, 1, 4, 7, 4, 7, 6, 7, 3, 4, 5, 12, 3, 2, 4, 8, 7, 8, 5, 9, 4, 2, 6, 14, 5, 2, 6, 7, 7, 9, 5, 9, 4, 4, 5, 14, 8, 2, 5, 8, 7, 10, 6, 9, 6, 2, 8, 15, 5, 3, 5, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 19 2013

Keywords

Comments

Conjecture: a(n)>0 for all n>2.
This has been verified for n up to 10^7.
Except for p=1, all practical numbers are even. Thus, (n-p,n+p) prime is possible only if n is odd, and (n-p,n+p) can be practical only if n is even (except for p=1). - M. F. Hasler, Jan 19 2013

Examples

			a(8)=1 since 4, 8-4 and 8+4 are all practical.
a(13)=1 since 6 is practical, and 13-6 and 13+6 are both prime.
		

Crossrefs

Cf. A209321: Indices for which a(n)=2.

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
    a[n_]:=a[n]=Sum[If[pr[p]==True&&((PrimeQ[n-p]==True&&PrimeQ[n+p]==True)||(pr[n-p]==True&&pr[n+p]==True)),1,0],{p,1,n-1}]
    Do[Print[n," ",a[n]],{n,1,100}]
  • PARI
    A209312(n)=sum(p=1,n-1, is_A005153(p) && ((is_A005153(n-p) && is_A005153(n+p)) || (isprime(n-p) && isprime(n+p)))) \\ (Could be made more efficient by separating the case of odd and even n.) - M. F. Hasler, Jan 19 2013