cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209320 Number of ways to write 2n = p+q with p and q both prime, p+1 and q-1 both practical.

Original entry on oeis.org

0, 0, 1, 2, 3, 2, 2, 2, 2, 3, 4, 5, 3, 2, 3, 3, 5, 7, 3, 3, 4, 4, 5, 8, 4, 3, 5, 2, 4, 8, 3, 4, 6, 2, 4, 7, 3, 4, 7, 2, 4, 9, 4, 4, 9, 5, 3, 9, 3, 5, 8, 3, 4, 10, 4, 6, 8, 5, 4, 14, 2, 4, 8, 2, 6, 10, 4, 4, 7, 4, 4, 10, 5, 4, 8, 3, 4, 9, 5, 5, 7, 3, 3, 13, 6, 5, 7, 4, 2, 11, 5, 5, 9, 4, 2, 9, 3, 6, 10, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 19 2013

Keywords

Comments

Conjecture: a(n)>0 for all n>2.
As p+q=(p+1)+(q-1), this unifies Goldbach's conjecture and its analog involving practical numbers.
The conjecture has been verified for n up to 10^7.

Examples

			a(8) = 2 since 2*8 = 3+13 = 11+5 with 3, 5, 11, 13 all prime and 3+1, 13-1, 11+1, 5-1 all practical.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
    a[n_]:=a[n]=Sum[If[PrimeQ[2n-Prime[k]]==True&&pr[Prime[k]+1]==True&&pr[2n-Prime[k]-1]==True,1,0],{k,1,PrimePi[2n-2]}]
    Do[Print[n," ",a[n]],{n,1,100}]