A209346 Number of 5-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero with no three beads in a row equal.
5, 40, 145, 400, 883, 1724, 3045, 5026, 7827, 11684, 16795, 23446, 31879, 42430, 55379, 71118, 89965, 112362, 138671, 169384, 204901, 245770, 292429, 345476, 405393, 472828, 548301, 632516, 726031, 829600, 943825, 1069510, 1207295
Offset: 1
Keywords
Examples
Some solutions for n=10: -9 -7 -10 -5 -10 -10 -8 -7 -8 -7 -9 -7 -4 -6 -10 -8 5 4 -4 -1 -4 -5 -7 -3 1 0 -4 2 -2 1 -4 -3 7 -3 -5 3 4 -1 8 -3 6 -1 9 -3 -2 4 10 8 -9 -1 10 3 5 10 3 3 -1 3 3 2 10 -2 6 1 6 7 9 0 5 6 4 10 2 5 1 6 -2 3 -2 2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A209344.
Formula
Empirical: a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) - a(n-4) + a(n-5) + 3*a(n-6) - a(n-7) - 2*a(n-8) + a(n-9).
Empirical g.f.: x*(5 + 30*x + 60*x^2 + 85*x^3 + 63*x^4 + 28*x^5 + 4*x^6 + x^7) / ((1 - x)^5*(1 + x)^2*(1 + x + x^2)). - Colin Barker, Jul 09 2018
Comments