cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A209369 Number of n X 3 1..3 arrays with no element with value z exactly a city block distance of z from another element with value z.

Original entry on oeis.org

19, 84, 115, 242, 690, 1922, 5460, 15488, 43792, 124002, 351154, 994050, 2814300, 7968032, 22558752, 63867602, 180820962, 511936002, 1449380900, 4103455232, 11617609120, 32891508162, 93121689570, 263644006658, 746422898732
Offset: 1

Views

Author

R. H. Hardin, Mar 07 2012

Keywords

Comments

Column 3 of A209374.

Examples

			Some solutions for n=5:
..2..2..3....3..2..3....3..2..3....1..2..1....2..3..1....1..2..1....3..1..3
..1..3..1....1..2..1....1..2..1....3..1..3....2..1..3....3..1..3....1..3..2
..3..1..2....3..1..3....3..1..3....2..3..1....1..3..2....1..3..2....3..1..3
..1..3..1....1..3..1....1..3..1....2..1..3....3..1..3....3..1..2....2..2..1
..3..2..3....2..2..3....2..1..3....1..3..1....2..2..1....2..3..1....3..1..3
		

Formula

Empirical: a(n) = 2*a(n-1) +5*a(n-3) +2*a(n-4) +6*a(n-5) +5*a(n-6) -2*a(n-8) -a(n-9) for n>12.
Empirical g.f.: x*(19 + 46*x - 53*x^2 - 83*x^3 - 252*x^4 - 315*x^5 - 423*x^6 - 476*x^7 - 163*x^8 + 111*x^9 + 122*x^10 + 35*x^11) / ((1 - 2*x - 2*x^2 - x^3)*(1 + 2*x^2 + 2*x^4 - x^6)). - Colin Barker, Feb 18 2018

A209367 Number of n X 1 1..3 arrays with no element with value z exactly a city block distance of z from another element with value z.

Original entry on oeis.org

3, 8, 19, 35, 64, 110, 185, 322, 599, 1084, 1902, 3280, 5816, 10425, 18711, 33023, 58229, 102865, 183340, 326023, 578770, 1023268, 1814036, 3218397, 5719285, 10142300, 17984603, 31872737, 56560901, 100345791, 178058874, 315719677
Offset: 1

Views

Author

R. H. Hardin, Mar 07 2012

Keywords

Comments

Column 1 of A209374.

Examples

			All solutions for n=5:
..2....1....2....3....3....2....3....3....3....2....1....2....3....3
..3....3....1....3....2....1....1....1....2....3....2....3....1....3
..1....1....3....1....3....3....2....2....2....3....2....1....2....1
..2....2....3....2....1....3....2....1....1....2....3....2....2....2
..1....1....2....2....3....1....1....3....3....2....3....2....3....1
		

Crossrefs

Cf. A209374.

Formula

Empirical: a(n) = a(n-2) + 4*a(n-4) + 4*a(n-5) + 5*a(n-6) - a(n-7) - 5*a(n-8) - 5*a(n-9) - 5*a(n-10) + a(n-11) + 2*a(n-12) for n>14.
Empirical g.f.: x*(3 + 8*x + 16*x^2 + 27*x^3 + 33*x^4 + 31*x^5 - 2*x^6 - 41*x^7 - 54*x^8 - 35*x^9 - 12*x^10 - 11*x^11 - 9*x^12 - 2*x^13) / ((1 - x)*(1 + x - 4*x^4 - 8*x^5 - 13*x^6 - 12*x^7 - 7*x^8 - 2*x^9 + 3*x^10 + 2*x^11)). - Colin Barker, Jul 09 2018

A209368 Number of n X 2 1..3 arrays with no element with value z exactly a city block distance of z from another element with value z.

Original entry on oeis.org

8, 39, 84, 129, 178, 338, 722, 1568, 3362, 7200, 15488, 33282, 71442, 153458, 329672, 708050, 1520768, 3266568, 7016258, 15070050, 32369058, 69525632, 149333762, 320753792, 688947200, 1479788802, 3178436450, 6826961250, 14663623752
Offset: 1

Views

Author

R. H. Hardin, Mar 07 2012

Keywords

Comments

Column 2 of A209374.

Examples

			Some solutions for n=5:
..3..2....3..1....3..1....3..2....2..3....2..1....2..2....2..1....2..3....3..1
..1..2....2..3....1..2....1..3....2..1....1..3....1..3....2..3....2..1....1..3
..3..1....2..1....3..1....3..1....1..3....3..3....3..1....3..3....1..3....2..1
..1..3....1..3....1..3....2..3....3..2....1..3....1..3....1..3....3..1....1..3
..2..1....3..1....2..1....2..1....1..2....2..2....2..1....2..1....1..2....3..2
		

Crossrefs

Cf. A209374.

Formula

Empirical: a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4) - a(n-5) - a(n-6) for n>11.
Empirical g.f.: x*(8 + 31*x + 37*x^2 - 18*x^3 - 160*x^4 - 252*x^5 - 218*x^6 - 32*x^7 + 93*x^8 + 73*x^9 + 16*x^10) / ((1 + x^2 - x^3)*(1 - x - 2*x^2 - x^3)). - Colin Barker, Jul 09 2018

A209370 Number of nX4 1..3 arrays with no element with value z exactly a city block distance of z from another element with value z.

Original entry on oeis.org

35, 129, 242, 968, 3698, 14112, 54450, 208658, 798848, 3065288, 11761250, 45106002, 172980000, 663426738, 2544555122, 9759442050, 37430668832, 143559037778, 550601290962, 2111759107200, 8099354578322, 31063907847200, 119141222480000
Offset: 1

Views

Author

R. H. Hardin Mar 07 2012

Keywords

Comments

Column 4 of A209374

Examples

			Some solutions for n=5
..2..1..3..1....2..2..1..3....1..2..1..3....1..3..1..2....2..2..3..1
..1..3..1..3....3..1..3..2....3..1..3..1....2..2..3..1....1..3..1..2
..3..1..2..1....1..3..1..2....2..3..1..3....1..3..1..3....3..1..3..1
..2..3..1..3....3..2..3..1....2..1..3..2....3..1..2..1....1..2..1..3
..2..1..3..2....1..2..1..3....1..3..1..3....1..3..1..3....3..1..3..2
		

Formula

Empirical: a(n) = a(n-1) +4*a(n-2) +13*a(n-3) +38*a(n-4) +56*a(n-5) +20*a(n-6) -107*a(n-7) -179*a(n-8) -5*a(n-9) +123*a(n-10) -11*a(n-11) -105*a(n-12) -74*a(n-13) -16*a(n-14) +25*a(n-15) +19*a(n-16) +6*a(n-17) +3*a(n-18) +2*a(n-20) -a(n-21) for n>23

A209371 Number of nX5 1..3 arrays with no element with value z exactly a city block distance of z from another element with value z.

Original entry on oeis.org

64, 178, 690, 3698, 19434, 99458, 510378, 2622050, 13507474, 69549218, 357584194, 1839211250, 9464568582, 48696339042, 250509806670, 1288779804242, 6630621737430, 34113122683362, 175501749819570, 902909367872738
Offset: 1

Views

Author

R. H. Hardin Mar 07 2012

Keywords

Comments

Column 5 of A209374

Examples

			Some solutions for n=5
..3..1..2..1..3....3..1..3..2..2....1..3..2..2..1....3..2..3..1..2
..1..3..2..3..1....2..2..1..3..1....2..1..3..1..3....1..3..1..3..1
..3..1..3..1..3....3..1..3..1..3....1..3..1..3..1....2..1..3..1..3
..1..2..1..3..2....1..3..1..3..1....3..2..3..1..2....1..3..1..3..1
..3..2..3..1..2....2..1..3..1..3....1..3..1..3..1....3..1..2..1..3
		

Formula

Empirical: a(n) = 3*a(n-1) +35*a(n-3) +85*a(n-4) +99*a(n-5) +163*a(n-6) +149*a(n-7) +573*a(n-8) -641*a(n-9) -3453*a(n-10) +1807*a(n-11) +10816*a(n-12) +2900*a(n-13) -7862*a(n-14) -5427*a(n-15) +2707*a(n-16) +6158*a(n-17) +6821*a(n-18) +3904*a(n-19) +6005*a(n-20) -777*a(n-21) -2314*a(n-22) -3245*a(n-23) -2119*a(n-24) -163*a(n-25) -1022*a(n-26) +136*a(n-27) -431*a(n-28) -46*a(n-29) -91*a(n-30) +33*a(n-31) -14*a(n-32) +9*a(n-33) -2*a(n-35) +a(n-36) for n>38

A209372 Number of n X 6 1..3 arrays with no element with value z exactly a city block distance of z from another element with value z.

Original entry on oeis.org

110, 338, 1922, 14112, 99458, 677448, 4657352, 32224392, 222731618, 1535799042, 10593565682, 73137825800, 504807500808, 3483311199048, 24039137911250, 165910635792722, 1144998159728418, 7901869378889042, 54533570221448658
Offset: 1

Views

Author

R. H. Hardin Mar 07 2012

Keywords

Comments

Column 6 of A209374.

Examples

			Some solutions for n=5
..3..2..2..1..3..1....3..2..3..1..2..1....2..1..3..2..2..1....3..2..3..1..2..1
..1..3..1..3..1..3....1..2..1..3..2..3....1..3..1..3..1..3....1..3..1..3..2..3
..2..1..3..1..3..1....3..1..3..1..3..1....3..1..3..1..3..2....2..1..3..1..3..1
..2..3..1..2..1..3....2..3..1..2..1..3....1..2..1..3..1..2....2..3..1..2..1..3
..3..1..3..1..3..1....3..1..3..2..3..1....3..1..3..1..3..1....3..1..3..1..3..2
		

Crossrefs

Cf. A209374.

Formula

Empirical: a(n) = a(n-1) +14*a(n-2) +99*a(n-3) +480*a(n-4) +853*a(n-5) +436*a(n-6) -2323*a(n-7) -22961*a(n-8) -92823*a(n-9) -109566*a(n-10) +569746*a(n-11) +2030470*a(n-12) -293503*a(n-13) -10059645*a(n-14) -9918549*a(n-15) +18973975*a(n-16) +37969285*a(n-17) +3662428*a(n-18) -35862891*a(n-19) -57230837*a(n-20) -85178624*a(n-21) -23562748*a(n-22) +100368825*a(n-23) +80676276*a(n-24) +46844891*a(n-25) +195226026*a(n-26) +361308350*a(n-27) +479250511*a(n-28) -129623337*a(n-29) -1262914837*a(n-30) -1851287254*a(n-31) -1785938979*a(n-32) +804164718*a(n-33) +5704875694*a(n-34) +11852999016*a(n-35) +16632464423*a(n-36) +22550379135*a(n-37) +19486831064*a(n-38) +19746367621*a(n-39) +9642676733*a(n-40) -3231241455*a(n-41) -5918667759*a(n-42) -31599729167*a(n-43) -18123291205*a(n-44) -38907162605*a(n-45) -26736770150*a(n-46) -16784905195*a(n-47) -35985249132*a(n-48) +16965218053*a(n-49) -42823460398*a(n-50) +38562880521*a(n-51) -42770608693*a(n-52) +40588075027*a(n-53) -35574515921*a(n-54) +30921013941*a(n-55) -24588082272*a(n-56) +19039316226*a(n-57) -13777268405*a(n-58) +9452914500*a(n-59) -5891683208*a(n-60) +3569931789*a(n-61) -1823418039*a(n-62) +933920718*a(n-63) -393931008*a(n-64) +145169946*a(n-65) -52043825*a(n-66) +7475295*a(n-67) -2404987*a(n-68) +7440905*a(n-69) -12061834*a(n-70) +13015534*a(n-71) -10110975*a(n-72) +5670394*a(n-73) -1915867*a(n-74) -247950*a(n-75) +624559*a(n-76) -305097*a(n-77) +59885*a(n-78) +48376*a(n-79) -51008*a(n-80) +11688*a(n-81) +4937*a(n-82) -1116*a(n-83) -1619*a(n-84) +642*a(n-85) +196*a(n-86) -182*a(n-87) +21*a(n-88) +19*a(n-89) -8*a(n-90) +a(n-91) for n > 92.

A209373 Number of nX7 1..3 arrays with no element with value z exactly a city block distance of z from another element with value z.

Original entry on oeis.org

185, 722, 5460, 54450, 510378, 4657352, 43249360, 402144800, 3725851316, 34509848328, 320002445430, 2967452389778, 27506545295520, 254980859279112, 2363917557528510, 21914994165576192, 203160244306365584
Offset: 1

Views

Author

R. H. Hardin Mar 07 2012

Keywords

Comments

Column 7 of A209374

Examples

			Some solutions for n=5
..1..3..2..2..1..3..1....1..3..2..2..1..3..2....1..2..2..3..1..2..1
..3..1..3..1..3..1..2....3..1..3..1..3..1..3....3..1..3..1..3..2..3
..2..2..1..3..1..3..1....2..3..1..3..1..2..1....1..3..1..2..1..3..1
..3..1..3..1..2..1..3....3..1..3..1..3..2..3....2..1..3..1..3..1..2
..1..3..1..3..1..3..2....1..3..2..3..1..3..1....1..3..1..3..1..3..2
		

A209366 Number of n X n 1..3 arrays with no element with value z exactly a city block distance of z from another element with value z.

Original entry on oeis.org

3, 39, 115, 968, 19434, 677448, 43249360, 5008603698, 1040887695040, 390290619582728, 263701318486632444, 321337793316358945352, 705783458367197689313992
Offset: 1

Views

Author

R. H. Hardin Mar 07 2012

Keywords

Comments

Diagonal of A209374

Examples

			Some solutions for n=5
..3..1..2..1..3....2..2..3..1..2....2..2..3..1..3....1..3..1..2..2
..1..3..1..3..2....1..3..1..3..2....1..3..1..3..1....2..1..3..1..3
..2..2..3..1..3....3..1..2..1..3....3..1..2..2..3....2..3..1..3..1
..1..3..1..2..1....1..3..1..3..1....1..3..1..3..1....3..1..3..1..3
..3..1..3..2..3....2..2..3..1..2....3..1..3..1..3....1..2..2..3..1
		
Showing 1-8 of 8 results.