cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209389 Product of positive odd integers smaller than n and relatively prime to n, taken Modd n. A209388(n) (Modd n).

Original entry on oeis.org

0, 1, 1, 3, 3, 5, 1, 7, 1, 9, 1, 1, 5, 13, 11, 15, 13, 17, 1, 1, 13, 21, 1, 1, 7, 25, 1, 1, 17, 1, 1, 31, 23, 33, 29, 1, 31, 37, 25, 1, 9, 1, 1, 1, 19, 45, 1, 1, 1, 49, 35, 1, 23, 53, 21, 1, 37, 57, 1, 1, 11, 61, 55, 63, 1, 1, 1, 1, 47, 1
Offset: 1

Views

Author

Wolfdieter Lang, Mar 10 2012

Keywords

Comments

For Modd n (not to be confused with mod n) see a comment on A203571.
See A209388 for the number of elements of the reduced residue class Modd n, called delta(n).
a(prime(n)) = (prime(n)-2)!! Modd prime(n) = 1 if n=1 or (prime(n)-1)/2 is odd, and = r(prime(n)) if (prime(n)-1)/2 is even. Here r(prime(n)) is the smallest positive nontrivial solution of x^2==1 (Modd prime(n)), which exists only for primes of the form 4*k+1 given in A002144. For r(prime(n)) see A206549. This is the analog of Wilson's theorem for Modd prime(n).
For (prime(n)-2)!! see A207332. [Wolfdieter Lang, Mar 28 2012]

Examples

			a(1) = 1 (Modd 1) = -1 (mod 1) = 0, because floor(1/1)=1 is odd. a(4)= 1*3 (Modd 4) = 3, a(15) = 1*7*11*13 (Modd 15) = 1001 (Modd 15) = 1001 (mod 15) because floor(1001/15) = 66 is even, hence a(15) = 11.
		

Crossrefs

Cf. A209388, A160377 (mod n analog).

Formula

a(n) = A209388(n) (Modd n), n>=1.