This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209403 #23 Sep 08 2022 08:46:01 %S A209403 6,19,44,89,162,271,424,633,910,1275,1732,2309,3018,3859,4872,6057, %T A209403 7446,9051,10888,12997,15358,18011,20972,24277,27950,31991,36464, %U A209403 41325,46602,52367,58612,65385,72722,80651,89160,98317,108070,118535,129756,141713,154442 %N A209403 Convolution of primes with odd primes. %H A209403 Reinhard Zumkeller, <a href="/A209403/b209403.txt">Table of n, a(n) for n = 1..10000</a> %F A209403 a(n) = Sum_{k=1..n} A000040(k) * A065091(n-k+1). %e A209403 a(2) = 2*5 + 3*3 = 19. %t A209403 Rest[Flatten[Table[ListConvolve[Prime[Range[2,n]],Prime[Range[n-1]]],{n,50}]]] (* _Harvey P. Dale_, Jan 10 2022 *) %o A209403 (Haskell) %o A209403 a209403 n = sum $ %o A209403 zipWith (*) (reverse $ take n a000040_list) a065091_list %o A209403 (Magma) [&+[NthPrime(k)*NthPrime(n+1-k): k in [1..n-1]]: n in [2..40]]; // _Bruno Berselli_, Mar 08 2012 %o A209403 (Python) %o A209403 from numpy import convolve %o A209403 from sympy import prime, primerange %o A209403 def aupton(nn): %o A209403 primes = list(primerange(2, prime(nn+1)+1)) %o A209403 return list(convolve(primes[:-1], primes[1:]))[:nn] %o A209403 print(aupton(41)) # _Michael S. Branicky_, Jun 19 2021 %Y A209403 Cf. A000040, A065091, A014342. %K A209403 nonn %O A209403 1,1 %A A209403 _Reinhard Zumkeller_, Mar 08 2012