This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209413 #29 Oct 26 2024 04:21:35 %S A209413 1,1,2,1,3,4,1,5,7,8,1,6,17,15,16,1,8,23,49,31,32,1,9,39,72,129,63,64, %T A209413 1,11,48,150,201,321,127,128,1,12,70,198,501,522,769,255,256,1,14,82, %U A209413 338,699,1524,1291,1793,511,512,1,15,110,420,1375,2223,4339,3084,4097,1023,1024 %N A209413 Triangle of coefficients of polynomials v(n,x) jointly generated with A209172; see the Formula section. %C A209413 For n > 1, n-th alternating row sum = (-1)^(n-1)*F(2*n-3), where F=A000045 (Fibonacci numbers). %C A209413 Coefficient of x^(n-1) in u(n,x): 2^(n-1). %C A209413 For a discussion and guide to related arrays, see A208510. %C A209413 Subtriangle of the triangle T(n,k) given by (1, 0, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 11 2012 %H A209413 G. C. Greubel, <a href="/A209413/b209413.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A209413 u(n,x) = x*u(n-1,x) + v(n-1,x), %F A209413 v(n,x) = u(n-1,x) + 2x*v(n-1,x), %F A209413 where u(1,x)=1, v(1,x)=1. %F A209413 From _Philippe Deléham_, Mar 11 2012: (Start) %F A209413 As DELTA-triangle T(n,k) with 0 <= k <= n: %F A209413 T(n,k) = 3*T(n-1,k-1) + T(n-2,k) - 2*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 0, T(2,0) = 1, T(2,1) = 2, T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. %F A209413 G.f.: (1+x-3*y*x-y*x^2+2*y^2*x^2)/(1-3*y*x-(1-2y^2)*x^2). (End) %e A209413 First five rows: %e A209413 1; %e A209413 1, 2; %e A209413 1, 3, 4; %e A209413 1, 5, 7, 8; %e A209413 1, 6, 17, 15, 16; %e A209413 First three polynomials v(n,x): %e A209413 1 %e A209413 1 + 2x %e A209413 1 + 3x + 4x^2. %e A209413 From _Philippe Deléham_, Mar 11 2012: (Start) %e A209413 (1, 0, -1/2, -1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 1, 0, 0, ...) begins: %e A209413 1; %e A209413 1, 0; %e A209413 1, 2, 0; %e A209413 1, 3, 4, 0; %e A209413 1, 5, 7, 8, 0; %e A209413 1, 6, 17, 15, 16, 0; %e A209413 1, 8, 23, 49, 31, 32, 0; %e A209413 1, 9, 39, 72, 129, 63, 64, 0; %e A209413 1, 11, 48, 150, 201, 321, 127, 128, 0; (End) %t A209413 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209413 u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; %t A209413 v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A209413 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209413 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209413 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209413 TableForm[cu] %t A209413 Flatten[%] (* A209172 *) %t A209413 Table[Expand[v[n, x]], {n, 1, z}] %t A209413 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209413 TableForm[cv] %t A209413 Flatten[%] (* A209413 *) %t A209413 CoefficientList[CoefficientList[Series[(1 + x - 3*y*x - y*x^2 + 2*y^2*x^2)/(1 - 3*y*x - (1 - 2 y^2)*x^2), {x,0,10}, {y,0,10}], x],y] // Flatten (* _G. C. Greubel_, Jan 03 2018 *) %Y A209413 Cf. A209172, A208510. %K A209413 nonn,tabl %O A209413 1,3 %A A209413 _Clark Kimberling_, Mar 08 2012