This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209417 #20 Jan 24 2020 03:29:19 %S A209417 1,1,1,1,4,1,1,5,11,1,1,8,18,26,1,1,9,38,56,57,1,1,12,51,142,159,120, %T A209417 1,1,13,81,229,463,423,247,1,1,16,100,412,886,1384,1072,502,1,1,17, %U A209417 140,584,1766,3086,3896,2618,1013,1,1,20,165,900,2850,6744,9942,10494,6213,2036,1 %N A209417 Triangle of coefficients of polynomials u(n,x) jointly generated with A209418; see the Formula section. %C A209417 For a discussion and guide to related arrays, see A208510. %C A209417 Subtriangle of the triangle given by (1, 0, 2, -3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Apr 01 2012 %H A209417 G. C. Greubel, <a href="/A209417/b209417.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A209417 u(n,x) = x*u(n-1,x) + v(n-1,x), %F A209417 v(n,x) = (x+1)*u(n-1,x) + 2x*v(n-1,x), %F A209417 where u(1,x)=1, v(1,x)=1. %F A209417 From _Philippe Deléham_, Apr 01 2012: (Start) %F A209417 As DELTA-triangle T(n,k) with 0 <= k <= n: %F A209417 G.f.: (1+x-3*y*x-3*y*x^2+2*y^2*x^2)/(1-3*y*x-x^2-y*x^2+2*y^2*x^2). %F A209417 T(n,k) = 3*T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) -2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End) %e A209417 First five rows: %e A209417 1; %e A209417 1, 1; %e A209417 1, 4, 1; %e A209417 1, 5, 11, 1; %e A209417 1, 8, 18, 26, 1; %e A209417 First three polynomials v(n,x): %e A209417 1 %e A209417 1 + x %e A209417 1 + 4x + x^2. %e A209417 From _Philippe Deléham_, Apr 01 2012: (Start) %e A209417 (1, 0, 2, -3, 0, 0, 0, ...) DELTA (0, 1, 0, 2, 0, 0, 0, ...) begins: %e A209417 1; %e A209417 1, 0; %e A209417 1, 1, 0; %e A209417 1, 4, 1, 0; %e A209417 1, 5, 11, 1, 0; %e A209417 1, 8, 18, 26, 1, 0; %e A209417 1, 9, 38, 56, 57, 1, 0; (End) %t A209417 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209417 u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; %t A209417 v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x]; %t A209417 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209417 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209417 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209417 TableForm[cu] %t A209417 Flatten[%] (* A209417 *) %t A209417 Table[Expand[v[n, x]], {n, 1, z}] %t A209417 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209417 TableForm[cv] %t A209417 Flatten[%] (* A209418 *) %t A209417 CoefficientList[CoefficientList[Series[(1 + x - 3*y*x - y*x^2 + 2*y^2*x^2)/(1 - 3*y*x - x^2 - y*x^2 + 2*y^2*x^2), {x,0,10}, {y,0,10}], x], y] // Flatten (* _G. C. Greubel_, Jan 03 2018 *) %Y A209417 Cf. A209418, A208510. %K A209417 nonn,tabl %O A209417 1,5 %A A209417 _Clark Kimberling_, Mar 09 2012