This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209418 #21 Jan 24 2020 03:28:43 %S A209418 1,1,3,1,4,7,1,7,13,15,1,8,30,38,31,1,11,42,104,103,63,1,12,69,178, %T A209418 321,264,127,1,15,87,331,657,921,649,255,1,16,124,484,1354,2200,2512, %U A209418 1546,511,1,19,148,760,2266,4978,6856,6598,3595,1023,1,20,195,1020,3870,9384,16938,20226,16827,8204,2047 %N A209418 Triangle of coefficients of polynomials v(n,x) jointly generated with A209417; see the Formula section. %C A209418 Alternating row sums: signed powers of 2. %C A209418 For a discussion and guide to related arrays, see A208510. %C A209418 Subtriangle of the triangle given by (1, 0, -2/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Apr 01 2012 %H A209418 G. C. Greubel, <a href="/A209418/b209418.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A209418 u(n,x) = x*u(n-1,x) + v(n-1,x), %F A209418 v(n,x) = (x+1)*u(n-1,x) + 2x*v(n-1,x), %F A209418 where u(1,x)=1, v(1,x)=1. %F A209418 From _Philippe Deléham_, Apr 01 2012: (Start) %F A209418 As DELTA-triangle T(n,k) with 0 <= k <= n: %F A209418 G.f.: (1+x-3*y*x-y*x^2+2*y^2*x^2)/(1-3*y*x-x^2-y*x^2+2*y^2*x^2). %F A209418 T(n,k) = 3*T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) -2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 3, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End) %e A209418 First five rows: %e A209418 1; %e A209418 1, 3; %e A209418 1, 4, 7; %e A209418 1, 7, 13, 15; %e A209418 1, 8, 30, 38, 31; %e A209418 First three polynomials v(n,x): %e A209418 1 %e A209418 1 + 3x %e A209418 1 + 4x + 7x^2. %e A209418 From _Philippe Deléham_, Apr 01 2012: (Start) %e A209418 (1, 0, -2/3, -1/3, 0, 0, 0, ...) DELTA (0, 3, -2/3, 2/3, 0, 0, 0, ...) begins: %e A209418 1; %e A209418 1, 0; %e A209418 1, 3, 0; %e A209418 1, 4, 7, 0; %e A209418 1, 7, 13, 15, 0; %e A209418 1, 8, 30, 38, 31, 0; (End) %t A209418 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209418 u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; %t A209418 v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x]; %t A209418 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209418 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209418 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209418 TableForm[cu] %t A209418 Flatten[%] (* A209417 *) %t A209418 Table[Expand[v[n, x]], {n, 1, z}] %t A209418 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209418 TableForm[cv] %t A209418 Flatten[%] (* A209418 *) %t A209418 CoefficientList[CoefficientList[Series[(1 + x)/(1 - 3*y*x - x^2 - y*x^2 + 2*y^2*x^2), {x,0,10}, {y,0,10}], x], y] // Flatten (* _G. C. Greubel_, Jan 03 2018 *) %Y A209418 Cf. A209417, A208510. %K A209418 nonn,tabl %O A209418 1,3 %A A209418 _Clark Kimberling_, Mar 09 2012