This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209436 #25 Jan 03 2018 15:57:20 %S A209436 0,0,0,1,0,0,3,0,0,0,8,2,0,0,0,19,7,0,0,0,0,43,17,4,0,0,0,0,94,39,14, %T A209436 0,0,0,0,0,201,88,37,8,0,0,0,0,0,423,192,83,28,0,0,0,0,0,0,880,408, %U A209436 181,74,16,0,0,0,0,0,0,1815,855,387,175,56,0,0,0,0 %N A209436 Table of a(n,m) = number of subsets of {1,...,n} which contain two elements whose difference is m+1. %H A209436 G. C. Greubel, <a href="/A209436/b209436.txt">Table of n, a(n) for the first 100 aintidiagonals, flattened</a> %H A209436 M. Tetiva, <a href="http://www.jstor.org/stable/10.4169/math.mag.84.4.296">Subsets that make no difference d</a>, Mathematics Magazine 84 (2011), no. 4, 300-301. %F A209436 a(n,m) = 2^n - Product_{i=0 to m} F(floor[(n + i)/(m + 1) + 2]) where F(n) is the n-th Fibonacci number. %e A209436 Table begins: %e A209436 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A209436 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A209436 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A209436 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A209436 8, 7, 4, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A209436 19, 17, 14, 8, 0, 0, 0, 0, 0, 0, 0, ... %e A209436 43, 39, 37, 28, 16, 0, 0, 0, 0, 0, 0, ... %e A209436 94, 88, 83, 74, 56, 32, 0, 0, 0, 0, 0, ... %e A209436 201, 192, 181, 175, 148, 112, 64, 0, 0, 0, 0, ... %e A209436 423, 408, 387, 377, 350, 296, 224, 128, 0, 0, 0, ... %e A209436 880, 855, 824, 799, 781, 700, 592, 448, 256, 0, 0, ... %e A209436 ...................................................... %e A209436 a(3,1) is the number of subsets of {1,2,3} containing two elements whose difference is two. There are 2 of these: {1,3} and {1,2,3} so a(1,3) = 2. %t A209436 a[n_, m_] := 2^n - Product[Fibonacci[Floor[(n + i)/(m + 1) + 2]], {i, 0, m}]; Flatten[Table[a[j - i, i], {j, 0, 20}, {i, 0, j}]] %Y A209436 Cf. A209434, A209435, A209437. %K A209436 nonn,tabl %O A209436 0,7 %A A209436 _David Nacin_, Mar 09 2012