A209437 Table of T(m,n), read by antidiagonals, is the number of subsets of {1,...,n} which contain two elements whose difference is m.
1, 0, 3, 0, 2, 8, 0, 0, 7, 19, 0, 0, 4, 17, 43, 0, 0, 0, 14, 39, 94, 0, 0, 0, 8, 37, 88, 201, 0, 0, 0, 0, 28, 83, 192, 423, 0, 0, 0, 0, 16, 74, 181, 408, 880, 0, 0, 0, 0, 0, 56, 175, 387, 855, 1815, 0, 0, 0, 0, 0, 32, 148, 377, 824, 1775, 3719, 0, 0, 0, 0, 0
Offset: 1
Examples
Table begins: 1, 3, 8, 19, 43, 94, 201, 423, 880, ... 0, 2, 7, 17, 39, 88, 192, 408, 855, ... 0, 0, 4, 14, 37, 83, 181, 387, 824, ... 0, 0, 0, 8, 28, 74, 175, 377, 799, ... 0, 0, 0, 0, 16, 56, 148, 350, 781, ... 0, 0, 0, 0, 0, 32, 112, 296, 700, ... 0, 0, 0, 0, 0, 0, 64, 224, 592, ... 0, 0, 0, 0, 0, 0, 0, 128, 448, ... 0, 0, 0, 0, 0, 0, 0, 0, 256, ... 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 0, 0, 0, 0, 0, 0, 0, 0, 0, ... ....................................... T(2,3) is the number of subsets of {1,2,3} containing two elements whose difference is two. There are 2 of these: {1,3} and {1,2,3} so T(2,3) = 2.
Links
- G. C. Greubel, Table of n, a(n) for the first 100 antidiagonals, flattened
- M. Tetiva, Subsets that make no difference d, Mathematics Magazine 84 (2011), no. 4, 300-301.
Programs
-
Mathematica
T[m_, n_] := 2^n - Product[Fibonacci[Floor[(n + i)/m + 2]], {i, 0, m - 1}]; Table[T[i, j + 2], {i, 1, 10}, {j, 0, 10}]; Flatten[Table[T[i - j + 1, j + 2], {i, 0, 20}, {j, 0, i}]]
Formula
T(m,n) = 2^n - Product_{i=0,...,m-1} F(floor((n + i)/m + 2)) where F(n) is the n-th Fibonacci number.
Comments