This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209451 #10 Dec 25 2017 04:06:15 %S A209451 1,4,8,20,240,696,280,5408,21216,3940,57072,275568,277200,1873816, %T A209451 2585024,4680600,54616512,81841608,10976840,530008720,1919331360, %U A209451 1235646880,4474673184,21605633376,28253665440,162655527004,177341693872,30581480180,2953208968320 %N A209451 a(n) = Pell(n)*A034896(n) for n >= 1, with a(0)=1, where A034896 lists the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n. %C A209451 Compare g.f. to the Lambert series of A034896: %C A209451 1 + 4*Sum_{n>=1} Chi(n,3)*n*x^n/(1 - (-x)^n). %C A209451 Here Chi(n,3) = principal Dirichlet character modulo 3. %H A209451 G. C. Greubel, <a href="/A209451/b209451.txt">Table of n, a(n) for n = 0..1000</a> %F A209451 G.f.: 1 + 4*Sum_{n>=1} Pell(n)*Chi(n,3)*n*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1). %e A209451 G.f.: A(x) = 1 + 4*x + 8*x^2 + 20*x^3 + 240*x^4 + 696*x^5 + 280*x^6 + ... %e A209451 where A(x) = 1 + 1*4*x + 2*4*x^2 + 5*4*x^3 + 12*20*x^4 + 29*24*x^5 + 70*4*x^6 + ... + Pell(n)*A034896(n)*x^n + ... %e A209451 The g.f. is also given by the identity: %e A209451 A(x) = 1 + 4*( 1*1*x/(1+2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 12*4*x^4/(1-34*x^4+x^8) + 29*5*x^5/(1+82*x^5-x^10) + 169*7*x^7/(1+478*x^7-x^14) + 408*8*x^8/(1-1154*x^8+x^16) + ...). %e A209451 The values of the Dirichlet character Chi(n,3) repeat [1,1,0,...]. %t A209451 A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A034896[n], {n, 1, 50}]] (* _G. C. Greubel_, Dec 24 2017 *) %o A209451 (PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)} %o A209451 {A002203(n)=Pell(n-1)+Pell(n+1)} %o A209451 {a(n)=polcoeff(1 + 4*sum(m=1,n,Pell(m)*kronecker(m,3)^2*m*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)} %o A209451 for(n=0,61,print1(a(n),", ")) %Y A209451 Cf. A034896, A205971, A205884, A209447, A209450, A209452, A204270, A000129 (Pell), A002203. %K A209451 nonn %O A209451 0,2 %A A209451 _Paul D. Hanna_, Mar 10 2012