This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209454 #12 Jan 04 2018 02:51:06 %S A209454 1,2,0,0,24,0,0,338,1632,1970,0,22964,0,0,0,0,2824992,0,0,0,0,0,0, %T A209454 900234724,0,2623476242,0,0,36915112104,178241928596,0,0, %U A209454 5016108528384,0,0,0,42600007379160,205691031143924,0,0,0,0,0,40725785296405556,98320743200877072,0,0,0,0 %N A209454 a(n) = Pell(n)*A033719(n) for n>=1, with a(0)=1, where A033719 lists the coefficients in theta_3(q)*theta_3(q^7). %C A209454 Compare g.f. to 1 + 2*Sum_{n>=1} Kronecker(n,7)*x^n/(1-(-x)^n) (the Lambert series of A033719). %H A209454 G. C. Greubel, <a href="/A209454/b209454.txt">Table of n, a(n) for n = 0..1000</a> %F A209454 G.f.: 1 + 2*Sum_{n>=1} Pell(n)*Kronecker(n,7)*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1). %e A209454 G.f.: A(x) = 1 + 2*x + 24*x^4 + 338*x^7 + 1632*x^8 + 1970*x^9 + 22964*x^11 +... %e A209454 where A(x) = 1 + 1*2*x + 12*2*x^4 + 169*2*x^7 + 408*4*x^8 + 985*2*x^9 + 5741*4*x^11 + 470832*6*x^16 + 225058681*4*x^23 +...+ Pell(n)*A033719(n)*x^n +... %e A209454 The g.f. is also given by the identity: %e A209454 A(x) = 1 + 2*( 1*x/(1+2*x-x^2) + 2*x^2/(1-6*x^2+x^4) - 5*x^3/(1+14*x^3-x^6) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) - 70*x^6/(1-198*x^6+x^12) + 0*169*13*x^7/(1+478*x^7-x^14) +...). %e A209454 The values of the symbol Kronecker(n,7) repeat [1,1,-1,1,-1,-1,0, ...]. %t A209454 A033719[n_]:= SeriesCoefficient[EllipticTheta[3, 0, x] EllipticTheta[3, 0, x^7], {x, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A033719[n], {n, 1, 50}]] (* _G. C. Greubel_, Jan 02 2017 *) %o A209454 (PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)} %o A209454 {A002203(n)=Pell(n-1)+Pell(n+1)} %o A209454 {a(n)=polcoeff(1 + 2*sum(m=1,n,Pell(m)*kronecker(m,7)*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)} %o A209454 for(n=0,50,print1(a(n),", ")) %Y A209454 Cf. A033719, A205974, A209453, A209455, A204270, A000129 (Pell), A002203. %K A209454 nonn %O A209454 0,2 %A A209454 _Paul D. Hanna_, Mar 10 2012