A209486
Number of 5-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
Original entry on oeis.org
4, 38, 140, 390, 866, 1702, 3014, 4984, 7774, 11620, 16716, 23352, 31768, 42302, 55232, 70950, 89774, 112150, 138434, 169120, 204610, 245452, 292080, 345096, 404980, 472382, 547820, 631998, 725474, 829006, 943190, 1068832, 1206574
Offset: 1
Some solutions for n=10:
-8 -5 -10 -6 -7 -6 -7 -8 -9 -7 -6 -10 -9 -8 -9 -6
-7 -4 1 -2 -4 0 -5 -5 9 -2 0 1 -1 0 2 -5
2 9 3 6 -5 -6 0 2 -7 6 4 -6 7 4 -7 1
3 -5 -4 -3 6 4 2 3 -3 2 0 7 2 -2 10 2
10 5 10 5 10 8 10 8 10 1 2 8 1 6 4 8
A209487
Number of 6-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
Original entry on oeis.org
11, 136, 731, 2606, 7179, 16660, 34233, 64220, 112263, 185506, 292759, 444680, 653957, 935472, 1306483, 1786806, 2398979, 3168444, 4123729, 5296612, 6722303, 8439626, 10491183, 12923536, 15787389, 19137752, 23034123, 27540670, 32726395
Offset: 1
Some solutions for n=8:
-6 -8 -6 -7 -8 -7 -7 -8 -8 -4 -5 -6 -8 -8 -6 -8
-1 -3 -6 -6 -2 0 -5 0 -4 -3 3 -2 1 -2 -3 3
2 -1 0 6 6 6 2 -2 -5 6 -2 3 -4 7 -4 -4
-2 -1 -3 2 -1 -7 5 -3 8 -3 -4 6 -3 -4 4 6
6 6 7 4 6 6 6 5 8 -4 2 -3 8 4 1 -1
1 7 8 1 -1 2 -1 8 1 8 6 2 6 3 8 4
A209488
Number of 7-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
Original entry on oeis.org
15, 458, 3740, 17771, 60778, 168453, 401634, 857433, 1679810, 3074315, 5321674, 8796771, 13984178, 21501971, 32119660, 46785813, 66648788, 93089119, 127741326, 172532039, 229703658, 301856427, 391974770, 503474661, 640230118, 806627193
Offset: 1
Some solutions for n=5:
-3 -4 -4 -4 -4 -4 -2 -5 -4 -4 -5 -4 -4 -5 -4 -5
-1 -1 -4 -3 0 -3 -1 -4 -4 -2 5 2 -2 -4 1 -1
-2 0 2 4 -1 -1 -2 5 -4 2 -4 3 0 5 1 3
4 -2 2 -3 4 -1 0 3 2 1 -2 -3 1 0 -3 -5
-3 3 3 4 0 4 3 -5 5 -3 -2 -1 4 1 1 4
0 4 -3 1 1 5 -2 1 1 3 3 -1 -1 -1 1 5
5 0 4 1 0 0 4 5 4 3 5 4 2 4 3 -1
A209477
Number of n-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
Original entry on oeis.org
1, 3, 7, 72, 866, 16660, 401634, 11891268, 413867410, 16583242015
Offset: 1
Some solutions for n=6:
.-6...-3...-6...-6...-6...-6...-6...-4...-6...-6...-6...-6...-2...-6...-6...-5
..2...-2...-1....0....4....2...-4...-4....2....0...-4....0...-1...-4...-1...-3
..6....0...-2....0....0....2....5...-2...-2....1....1...-2....1....1....3....0
.-5....0....4...-2...-3....2....0....2....1....0....5...-2...-1....1....3....3
.-2....6....2....3...-1...-4....2....4....0....5....3....5....1....5...-2....6
..5...-1....3....5....6....4....3....4....5....0....1....5....2....3....3...-1
A209478
Number of n-bead necklaces labeled with numbers -1..1 allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
Original entry on oeis.org
1, 2, 1, 4, 4, 11, 15, 43, 77, 199, 423, 1080, 2514, 6355, 15529, 39429, 98875, 252551, 643133, 1653677, 4254070, 11005241, 28518931, 74179434, 193328017, 505236093, 1322919905, 3471492272, 9125743338
Offset: 1
Some solutions for n=10:
.-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1
.-1....0...-1...-1...-1....0...-1...-1....0....0....0....0...-1...-1...-1...-1
..1....0....0....0....1....0....1....1...-1...-1...-1....0...-1....0....0....0
.-1...-1....0....0...-1...-1...-1...-1....1....1....1....1....1....0....0....0
..0....0....0....1....1....0....0....0...-1...-1....0...-1...-1....1....0....0
..0....0....0....1...-1....0....0....0....0....1....0....0....1....0....0....0
..0....0....0...-1....1....1...-1....0....0...-1...-1....0....1....0....1....1
..0....0....1...-1...-1....0....1....1....1....1....1....1....0...-1...-1....1
..1....1....0....1....1....0....1....0....0....0....0....0....0....1....1....0
..1....1....1....1....1....1....1....1....1....1....1....0....1....1....1....0
A209479
Number of n-bead necklaces labeled with numbers -2..2 allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
Original entry on oeis.org
1, 3, 4, 15, 38, 136, 458, 1781, 6912, 28141, 115761, 485607, 2056341, 8800541, 37945282, 164766522, 719617100, 3159529303, 13936202144
Offset: 1
Some solutions for n=10:
.-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2
.-1....0...-2...-2....0...-1...-1...-2...-1...-2...-2...-2...-1....1....0....0
..1...-1....0....1....0...-1....1....0....2...-1....0...-1...-1...-1...-1....0
.-2...-1....0....2...-2....2...-2...-2....0....2....1....1...-1....0....2....2
.-1....0....2...-1....0....0....2....2...-1....1....1....2....2....0...-2...-1
..2...-1...-1...-2....2....0....2....1....1...-2....2....2....0....2....2....0
..0....2....2....1....1....1...-2...-1....1....0....2....2....2...-1....2...-1
..2....2...-2....2....2....1....0....0....1....2...-2...-1....2....0...-1...-1
..0....0....2...-1...-2....0....1....2...-2....2...-1...-1...-1...-1...-1....2
..1....1....1....2....1....0....1....2....1....0....1....0....0....2....1....1
A209480
Number of n-bead necklaces labeled with numbers -3..3 allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
Original entry on oeis.org
1, 4, 7, 35, 140, 731, 3740, 20888, 118137, 687981, 4059192, 24292229, 146840708, 895753665, 5505619880, 34065921090
Offset: 1
Some solutions for n=8:
.-3...-2...-3...-3...-3...-3...-3...-3...-3...-2...-3...-3...-3...-3...-3...-3
.-2...-2...-1...-1....0...-3....1....0...-1...-1...-2....0...-1...-1...-2...-3
..0....0...-3....1...-1...-1...-1...-2....2...-2....0....3....2....0....1...-1
..3....3....1....1....3...-1...-2....2....3...-1....1...-2....0...-3...-1....3
..3...-2....2....1....2....3....1....3....1....3....3....2....2....2...-2....3
.-2....1....0....0....0....1....1....1....0....0....2....2....1...-1....3...-3
..1....0....2....0...-3....2....2...-2...-3....0...-3...-3...-2....3....3....1
..0....2....2....1....2....2....1....1....1....3....2....1....1....3....1....3
A209481
Number of n-bead necklaces labeled with numbers -4..4 allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
Original entry on oeis.org
1, 5, 12, 72, 390, 2606, 17771, 128598, 950292, 7180767, 55056590, 427567892, 3354737555, 26555548849
Offset: 1
Some solutions for n=7:
.-3...-4...-3...-4...-3...-4...-4...-3...-2...-4...-4...-3...-2...-4...-3...-1
.-2...-2...-2...-3...-1...-1....1...-1...-2....2....2...-3...-2....2....2...-1
..4....3....4....0....0....4....1....4...-2...-4....1...-2....1....1...-2...-1
..0....1....2....4....3...-3...-1...-2....0....3...-2....0...-2...-3....2....0
.-1...-1...-2....2....2....1....1...-1....2...-4....2....3...-1...-2....0....0
..3...-1....0...-1...-2....2....1...-1....1....3...-2....2....2....3...-1...-1
.-1....4....1....2....1....1....1....4....3....4....3....3....4....3....2....4
A209482
Number of n-bead necklaces labeled with numbers -5..5 allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
Original entry on oeis.org
1, 6, 17, 128, 866, 7179, 60778, 541494, 4926728, 45758958, 431242307, 4115192739
Offset: 1
Some solutions for n=7:
.-3...-4...-2...-5...-5...-4...-4...-5...-4...-4...-3...-4...-3...-5...-3...-4
.-3....0...-1...-2...-2....1....0...-1...-3...-3...-2...-2...-3...-5...-2...-2
..0....0....2....4....3....0....1...-3....1...-1....2...-1....4...-2...-2....5
..3....0....2....1....4....1...-2....3....4....4...-1....1...-1....2...-1....3
.-2...-1...-1....1...-4...-4....4....1....0....0....2....1....0....0....3...-4
..2....2...-2....0....2....1...-3....5....2....3...-3....4...-1....5....2....1
..3....3....2....1....2....5....4....0....0....1....5....1....4....5....3....1
A209483
Number of n-bead necklaces labeled with numbers -6..6 allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
Original entry on oeis.org
1, 7, 24, 205, 1702, 16660, 168453, 1778878, 19211780, 211576925, 2364602172, 26755001917
Offset: 1
Some solutions for n=6:
.-6...-4...-4...-4...-4...-5...-3...-5...-5...-5...-5...-6...-2...-2...-2...-6
.-3...-1...-4...-1...-1....0...-2....1...-3...-4....0...-1...-1....0...-2...-4
.-3....3....0....5....1....3...-3...-2...-2....0...-1...-3....1....0....3....3
..1....2...-1...-3...-1...-4...-1...-1...-2....6....5....1....1...-1...-2...-4
..5...-4....6...-2....3....1....4....4....6....4...-1....3...-1...-1...-2....6
..6....4....3....5....2....5....5....3....6...-1....2....6....2....4....5....5
Showing 1-10 of 11 results.
Comments