cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A006568 Denominators of generalized Bernoulli numbers.

Original entry on oeis.org

1, 3, 18, 90, 270, 1134, 5670, 2430, 7290, 133650, 112266, 1990170, 9950850, 2296350, 984150, 117113850, 351341550, 33657930, 21597171750, 3410079750, 572893398, 33613643250, 834229509750, 108812544750, 544062723750, 18280507518, 105464466450, 18690647109750
Offset: 0

Views

Author

Keywords

Comments

Triangle A209518 * [1, -1/3, 1/18, 1/90, ...] = [1, 0, 0, 0, 0, ...]. - Gary W. Adamson, Mar 09 2012

Examples

			a(0), a(1), a(2), ... = (1, -1/3, 1/18, ...) = leftmost column of the inverse of the 3 X 3 matrix [1; 1, 3; 1, 4, 6; ...].
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    rows = 28; M = Table[If[n-1 <= k <= n, 0, Binomial[n, k]], {n, 2, rows+1}, {k, 0, rows-1}] // Inverse;
    M[[All, 1]] // Denominator (* Jean-François Alcover, Jul 14 2018 *)
  • Sage
    def A006568_list(len):
        f, R, C = 1, [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            f *= n
            for k in range(n, 0, -1):
                C[k] = C[k-1] / (k+2)
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*f).denominator())
        return R
    print(A006568_list(28)) # Peter Luschny, Feb 20 2016

Formula

Given a variant of Pascal's triangle (cf. A209518) in which the two rightmost diagonals are deleted, invert the triangle and extract the leftmost column. Considered as a sequence, we obtain A006568/A006569: (1, -1/3, 1/18, 1/90, ...). - Gary W. Adamson, Mar 09 2012

Extensions

More terms from Peter Luschny, Feb 20 2016
Showing 1-1 of 1 results.